首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From mouse fecal material we have isolated four strictly anaerobic bacteria which, when associated with germfree mice or rats, reduced the cecal volume by 80 and 60%, respectively. This cecal volume-reducing flora did not metabolize estrone-3-sulfate, taurolithocholate-3-sulfate or taurolithocholate but gnotobiotic rats associated with this particular flora (CRF-rats) excreted these compounds faster in feces plus urine than did germfree rats. The time needed for 50% excretion (t1/2) of orally administered estrone-3-sulfate was 32 h in germfree rats versus 13 h in CRF rats; for intraperitoneally injected taurolithocholate-3-sulfate the t1/2 was 63 h in germfree versus 17 h in CRF rats and for taurolithocholate the t1/2 was 199 h in germfree and 96 h in CRF rats. Association of germfree rats with the cecal volume-reducing flora did not change the cecal absorption rate of estrone-3-sulfate, but shortened the 50% small intestinal transit time of [14C]PEG from 10 to 3 h; a value also found in conventional rats. These results stress the important influence of the intestinal microflora on the absorption and excretion of steroids via its effect on the physiology of the whole intestinal tract and point to the deficiencies inherent to the use of germfree animals in excretion studies.  相似文献   

2.
Intragastric administration of rifampicin to rats in a dose of 40 mg/kg resulted in decreasing of the contents of grampositive cocci and lactobacilli and increasing of the number of gramnegative aerobic potentially pathogenic bacteria in feces of the experimental animals. It was noted that along with changes in the composition of the fecal microflora after the exposure to the antibiotic there were disorders in feces excretion of ammonia and amino acids such as alanine and glutamic acid as well as lactic, amber, butyric, valeric and alpha-ketoglutaric acids. Reduction of the changed biochemical indices was shown to be slower than that of the routine microbiological indices.  相似文献   

3.
The distribution in the mouse tissues of 13-[14C]-12,13-epoxtrichothec-9-ene administered intravenously was determined by whole-body autoradiography and by tracing the radioactivity of the tissues oxidized in an Auto Sample Oxidizer. The appearance of the label in urine and feces was also followed by the tracer technique. The distributions of radioactivity in tissues as determined by the two methods were almost identical. On the autoradiograms of mice killed 10 min after the injection, marked blackening of the film was observed at the sites corresponding to the liver, kidney, and bladder with urine, and much less darkening at other sites. The radioactivities contained in the liver, kidney, urine and small intestine were 13.3, 2.3, 2.6 and 10.2% of the dose, respectively. The labeled toxin was rapidly excreted into urine and feces, 56.0 and 4.9% in 6 hr and 66.7 and 28.0% in 24 hr after injection, respectively. Oral administration of the labeled toxin to mother mice resulted in the appearance of radioactivity in the stomach contents of 7-day suckling mice, thus demonstrating indirectly the secretion of the toxin into the milk. An attempt to show a respiratory route of excretion in rats given the radioactive compound orally or intravenously failed to detect any radioactivity in the expired CO2 collected for 6 hr, suggesting that the 14C in the epoxy ring was intact.  相似文献   

4.
After oral administration in single doses of 40 and 160 mg/kg to Wistar rats rifampicin was detected in 3 hours in the contents of the large intestine The maximum rifampicin concentrations in the feces (120 and 300 micrograms/g) were detected in 24 hours. The antibiotic was present in the animal feces for 6-7 days. The antibiotic administration led to marked changes in microbiocenosis of the large intestine: disappearance of coccal flora, lower quantities of Escherichia and Lactobacillus and lower total quantities of anaerobic bacteria. It was also accompanied by changes in the structure of the typhlon biofilm. By the 28th day after discontinuation of the antibiotic administration (the end of the observation period) the large intestine microflora did not recover completely.  相似文献   

5.
In a previous preliminary investigation, we reported on the excretion, tissue disposition and metabolism of the chemopreventive agent 1,4-phenylenebis(methylene)selenocyanate (p-XSC) in the rat, but similar studies in the mouse have not been explored. Following the oral administration of p-XSC (50 micromol/kg body weight), selenium excretion in feces was comparable to that in urine in mice, but in rats, feces was the major route of excretion. Tetraselenocyclophane (TSC) was the major metabolite detected in mouse and rat feces. In both species, levels of selenium in exhaled air were negligible. At termination, in the mouse, the stomach had the highest selenium content followed by liver and blood, but lung and kidney contained negligible levels of selenium; in the rat, the selenium level in liver was the highest followed by kidney, stomach, blood and lung. The identification of TSC as a fecal metabolite in both species let us to postulate the following metabolic pathway: p-XSC-->glutathione conjugate (p-XSeSG)-->a selenol (p-XSeH)-->TSC. Since the glutathione conjugate appears to be the proximal precursor for the selenol metabolite that may be an important intermediate in cancer chemoprevention, we report for the first time the synthesis of p-XSeSG and its other potential metabolites, namely the cysteine- and N-acetylcysteine-conjugates of p-XSC. HPLC analysis of the urine and bile showed a few metabolites of p-XSC; none of which eluted with the synthetic standards described above. When we examined the conversion of p-XSC and p-XSeSG in vitro using rat cecal microflora, TSC was formed from p-XSeSG but not from p-XSC. The formation of TSC from p-XSC in vivo but not in vitro suggests that p-XSC needs to be metabolized to p-XSeSG or an intermediate derived from its further metabolism. Thus, p-XSeSG was given orally to rats and the results showed that the pattern of selenium excretion after p-XSeSG treatment was similar to that of p-XSC; TSC was also identified as a fecal metabolite of p-XSeSG. It may be that the conversion of p-XSeSG to TSC is too facile, or the mere conjugation of p-XSC with glutathione does not occur in rats and mice.  相似文献   

6.
目的:研究重组人甲状旁腺素(1-34)[rhPTH(1—34)]在大鼠体内的组织分布和排泄情况,为进一步的临床实验提供参考。方法:用^125I-同位素示踪法结合TCA酸沉淀法测定各主要器官组织的总放射性浓度和酸沉淀部分放射性浓度,获得rhPTH(1-34)的尿粪排泄和胆汁排泄数据。结果:各主要器官组织的总放射性浓度排序由高到低依次为:尿、肾、膀胱、肠内容物、肌肉、血清、肾上腺、空肠、肝、肺脏、卵巢、肠淋巴结、脾、胸腺、心脏、脂肪、睾丸和脑;大鼠皮下注射。^125I-rhPTH(1-34)后,骨骼组织中放射性分布低于血浆,但消除缓慢,血浆浓度4h较15min降低了78%,而骨骼浓度多数仅降低了50%以下;注射后72h,尿、粪分别排出注入放射性量的73.6%±10.9%和3.2%±1.3%,尿、粪合计排出注入放射性量的76.8%±11,4%;注射后12h,胆汁中累积排出注入放射性的6.64%±1.04%。经分子筛排阻HPLC证实,^125I-rhPTH(1-34)不与大鼠的血浆蛋白发生结合。结论:rhPTH(1-34)在泌尿系统中的分布较高,在脂肪和脑中最低,提示药物不易透过血脑屏障;就全身放射性分布而言,在骨骼中分布较高,提示药物具有一定的靶向性;rhPTH(1-34)主要经尿的形式排泄。  相似文献   

7.
Until 70 h after a single iv injection of 10 uCi [125I]triiodothyronine (T3), normal rats excreted 15.8 +/- 2.8% of the radioactivity with the feces and 17.5 +/- 2.7% with the urine, while in intestine-decontaminated rats fecal and urinary excretion over this period amounted to 25.1 +/- 7.2% and 23.6 +/- 4.0% of administered radioactivity, respectively (mean +/- SD, n = 4). In fecal extracts of decontaminated rats 11.5 +/- 6.8% of the excreted radioactivity consisted of T3 glucuronide (T3G) and 10.9 +/- 2.8% of T3 sulfate (T3S), whereas no conjugates were detected in feces from normal rats. Until 26 h after ig administration of 10 uCi [125I]T3, integrated radioactivity in blood of decontaminated rats was 1.5 times higher than that in normal rats. However, after ig administration of 10 uCi [125I]T3G or [125I]T3S, radioactivity in blood of decontaminated rats was 4.9- and 2.8-fold lower, respectively, than in normal rats. The radioactivity in the serum of control animals was composed of T3 and iodide in proportions independent of the tracer injected, while T3 conjugates represented less than 10% of serum radioactivity. These results suggest an important role of the intestinal microflora in the enterohepatic circulation of T3 in rats.  相似文献   

8.
1-Nitropyrene (1-NP), a weak carcinogen associated with diesel exhaust particles, has previously been detected in workplace atmospheres with in-use diesel engines and in the general environment. In order to gain insight in its biological fate, a single dose of [14C]-1-NP (27.6 microCi, 750 mg/kg body weight, b.w.) was administered intragastrically to rats and the presence of metabolites in blood and tissue homogenates, and radioactivity associated with blood proteins and tissue DNA, were studied. Early peak levels of radioactivity observed in blood and tissue homogenates indicated a rapid absorption of [14C]-1-NP from the gastrointestinal tract. Metabolite patterns observed in plasma, liver and kidney homogenates strongly suggested an important role of the intestinal microflora in the enterohepatic recirculation, but not in nitroreduction of 1-NP prior to absorption from the gastrointestinal tract. This might explain the low levels of radioactivity associated with blood proteins, since 1-nitrosopyrene, a product of nitroreduction of 1-NP, is likely to be involved in protein binding. Levels of radioactivity associated with plasma proteins were approximately four times higher than the levels of radioactivity associated with hemoglobin (401.0 and 84.1 pmol/g protein per micromol 1-NP kg b.w., respectively, at 24 h). Maximal 25% of the associated radioactivity was released following mild alkaline hydrolysis of either hemoglobin or plasma proteins. 1-Aminopyrene was the only released compound after hydrolysis of hemoglobin. In addition to 1-aminopyrene, two more polar unidentified metabolites were detected following hydrolysis of plasma proteins. Association of radioactivity with DNA was highest in the liver at the first moments of observation (7.4 pmol 14C Eq./mg DNA per micromol 1-NP kg b.w.), but decreased rapidly to levels lower than observed for kidney DNA (max. 3.0 pmol 14C Eq./mg DNA per micromol 1-NP kg b.w. at 24 h). In lungs 8-50 times less radioactivity was associated with DNA than observed in the liver and kidneys. The results of this study show, that 1-NP undergoes an extensive and complex biotransformation in vivo, resulting in a variety of metabolites present in blood and tissue homogenates and a diversity of blood protein adducts. Concentrations of plasma metabolites, blood protein adducts and DNA adducts were rather low. In addition, previous studies also showed relatively low concentrations of metabolites present in urine. Therefore, sensitive and selective methods will be needed in order to evaluate the biological fate of 1-NP, associated with diesel exhaust particles, in humans.  相似文献   

9.
Concentrations of volatile fatty acids, free amino acids, ammonia, protein, carbohydrates, carboxylic acids and some cations were determined in feces of intact animals (rats) chromatographically and spectroscopically. Oral administration of 8 chemotherapeutic drugs in the therapeutic doses to the animals resulted in changing excretion of the majority of the above compounds associated with vital activity of the large intestine microflora which depended on the drug type. Investigation of metabolic activity of normal microflora of the gastrointestinal tract is shown promising for estimation of intestinal microbial biocenosis.  相似文献   

10.
Retention, dynamics of75Se and65Zn distribution, and elimination were studied in rats after separate or joint single doses of these metals. White female Wistar rats were divided into four groups (fifteen rats each). Group I received Na2 75SeO3 (0.1 mg Se/kg i.g.), group II received Na2 75SeO3+ZnCl2 (5 mg Zn/kg s.c.), group III received65ZnCl2, and group IV received65ZnCl2+Na2SeO3. The zinc and selenium contents in the tissues were estimated during 120 h after administration; excretion in urine and feces of animals was determined throughout the experiment. Combined administration of zinc and selenium resulted in an enhanced selenium retention in the brain, spleen, kidneys, blood, lungs, and heart. A selenium-induced increase in the concentration of zinc was noted in the bowels, blood, liver, kidneys, spleen, brain, and lungs. The effects of the zinc/selenium interaction were visible especially in the lowered level of excretion of these elements. Zinc induced a decrease in the excretion of selenium in urine, with no concomitant changes in the excretion in feces. However, a visible decrease in the excretion of zinc in the feces was observed in the presence of selenium. The present results indicate an occurrence of clear-cut interaction effects between zinc and selenium administered simultaneously in the rat.  相似文献   

11.
We applied micellar electrokinetic capillary chromatography to simultaneous separation and determination of nitrazepam and its major metabolites, 7-aminonitrazepam and 7-acetamidonitrazepam, in spiked urine. Prior to electrophoresis, the three compounds were successfully extracted from the spiked urine with commercial disposable solid-phase cartridges. The optimum running buffer for the separation was prepared by combining 85 parts of 60 mM sodium dodecyl sulphate—6 mM phosphate—borate, adjusted to pH 8.5, with 15 parts of methanol. The separation order, completed within 25 min, was 7-aminonitrazepam > 7-acetamidonitrazepam > nitrazepam, at an applied potential of 20 kV. We obtained reproducible electropherograms in successive repetitions, and few other peaks or interferences appeared in the electropherogram. The detection limits of the three compounds were 50–100 pg (0.1–0.2 μg/ml of analyte in spiked urine), and the recoveries were 78.9–100.8% for 1 μg/ml and 84.1–100.3% for 5 μg/ml. The application of this method to forensic or clinical samples is demonstrated.  相似文献   

12.
Male (n=18) and female (n=18) F344 rats were administered a single dose of OTA (0.5 mg/kg b.w.) in corn oil by gavage. Animals (n=3) were sacrificed 24, 48, 72, 96, 672 and 1,344 hours after OTA administration and concentrations of OTA and OTA-metabolites in urine, feces, blood, liver and kidney were determined by HPLC with fluorescence detection and/or by LC-MS/MS. Recovery of unchanged OTA in urine amounted to 2.1% of dose in males and 5.2% in females within 96 h. In feces, only 5.5% resp. 1.5% of dose were recovered. The major metabolite detected was OTalpha, low concentrations of OTA-glucosides were also present in urine. Other postulated metabolites were not observed. The maximal blood levels of OTA were observed between 24 and 48h after administration and were app. 4.6 µmol/l in males and 6.0 µmol/l in females. Elimination of OTA from blood followed first-order kinetics with a half-life of app. 230h calculated from 48h to 1344h. In liver of both male and female rats OTA-concentrations were less than 12 pmol/g tissue, with a maximum at 24h after administration. In contrast, OTA accumulated in the kidneys, reaching a concentration of 480 pmol/g tissue in males 24h after OTA-administration. In general, tissue concentrations in males were higher than in females. OTalpha was not detected in liver and kidney tissue of rats administered OTA and OTalpha concentrations in blood were low (10–15 nmol/1). The high concentrations of OTA in kidneys of male rats may explain the organ- and gender-specific toxicity of OTA.  相似文献   

13.
Benthiocarb labeled at benzyl methylene group with carbon-14 was synthesized and studied on the distribution, excretion and metabolism in white mice. Benthiocarb was rapidly translocated into organs after oral administration. Radioactive substances were also rapidly eliminated mainly into urine, slightly into feces and little into expiration. Major metabolites in urine were identified as 4-chlorohippuric and 4 chlorobenzoic acids, and small amounts of glucuronides of the latter acid and 4-chlorobenzyl alcohol were detected. Benthiocarb was degraded in liver homogenates, in which the microsomal fraction showed the largest activity, and the degradation was accelerated by reduced NADP as the cofactor for the reaction. N-Desethylbenthiocarb, bis(4-chlorobenzyl) mono- and di-sulfides, and 4-chlorobenzoic acid were identified in the incubation mixture of the liver homogenates. The main metabolic pathway in mice seemed to be as follows; parent benthiocarb and/or the N-desethylbentiocarb were hydrolyzed, and the produced 4-chlorobenzylmercaptan presumed to be oxidized finally to 4-chlorobenzoic acid, which then conjugated with glycine to produce 4-chlorohippuric acid.  相似文献   

14.
This study investigated the pharmacokinetic properties of crocin following oral administration in rats. After a single oral dose, crocin was undetected while crocetin, a metabolite of crocin, was found in plasma at low concentrations. Simultaneously, crocin was largely present in feces and intestinal contents within 24h. After repeated oral doses for 6 days, crocin remained undetected in plasma and plasma crocetin concentrations were comparable to the corresponding data obtained after the single oral dose. Furthermore, the absorption characteristics of crocin were evaluated in situ using an intestinal recirculation perfusion method. During recirculation, crocin was undetected and low concentrations of crocetin were detected in plasma. The concentrations of crocin in the perfusate were reduced through different intestinal segments, and the quantities of drug lost were greater throughout the colon. These results indicate that (1) orally administered crocin is not absorbed either after a single dose or repeated doses, (2) crocin is excreted largely through the intestinal tract following oral administration, (3) plasma crocetin concentrations do not tend to accumulate with repeated oral doses of crocin, and (4) the intestinal tract serves as an important site for crocin hydrolysis.  相似文献   

15.
To investigate the modifying role of the intestinal microflora in the metabolism of 1-nitropyrene (1-NP) via enterohepatic circulation, we collected bile from male Wistar rats administered [3H]1-NP orally. The bile was mixed with the intestinal contents (IC) prepared from untreated rats and the mixture was incubated anaerobically under an atmosphere of nitrogen at 37 C. Samples of the reaction mixture were removed at intervals to assay their mutagenic potential, to determine the radioactivity bound to the IC, and for analysis of the biliary metabolites. The binding of the radioactivity to the IC increased linearly as a function of time during the 1-hr incubation. The time-dependent binding does not occur with heat-treated IC and the binding was inhibited by addition of D-saccharic acid 1,4-lacton, a beta-glucuronidase inhibitor. The mutagenicity (for Salmonella typhimurium strain TA98 without S9 mix) of the bile increased early in the incubation period and then decreased very rapidly. The mutagenicity of the bile was also enhanced by treatment with a sonicated IC extract or beta-glucuronidase, but not with a heat-treated IC or aryl-sulfatase. The metabolites produced after the bile was incubated for short periods with the IC were mainly nitrohydroxypyrenes; at later times nitroreduction occurred. The level of acetylaminohydroxypyrenes, which were formed by deconjugation, did not change during the incubation. To determine the degree of contribution of the IC to the total acetylating capacity, we measured acetyltransferase activity of the IC and various organs in Wistar rats. The liver had the highest N-acetyltransferase activity among the seventeen organs examined. Considerable activity was also detected in the kidney, small intestine, lung, and testis, but the IC showed very low activity. The acetylating capacity of the IC was 0.27% of the total capacity in rats, and that of the liver was more than 80%. These results suggest that the nitrohydroxypyrenes formed from 1-NP in the liver were conjugated to glucuronic acid and excreted via the bile duct into intestine. Hydrolysis of these glucuronide conjugates by bacterial beta-glucuronidase liberated into intestine, free nitrohydroxypyrenes, which were direct-acting mutagens. The released aglycons were then rapidly nitro-reduced by intestinal microflora, but contribution of the intestinal microflora to acetylation of the reduced metabolites is very low.  相似文献   

16.
The interaction of exogenous carnitine with whole body carnitine homeostasis was characterized in the rat. Carnitine was administered in pharmacologic doses (0-33.3 mumols/100 g body weight) by bolus, intravenous injection, and plasma, urine, liver, skeletal muscle and heart content of carnitine and acylcarnitines quantitated over a 48 h period. Pre-injection urinary carnitine excretion was circadian as excretion rates were increased 2-fold during the lights-off cycle as compared with the lights-on cycle. Following carnitine administration, there was an increase in urinary total carnitine excretion which accounted for approx. 60% of the administered carnitine at doses above 8.3 mumols/100 g body weight. Urinary acylcarnitine excretion was increased following carnitine administration in a dose-dependent fashion. During the 24 h following administration of 16.7 mumols [14C]carnitine/100 g body weight, urinary carnitine specific activity averaged only 72 +/- 4% of the injection solution specific activity. This dilution of the [14C]carnitine specific activity suggests that endogenous carnitine contributed to the increased net urinary carnitine excretion following carnitine administration. 5 min after administration of 16.7 mumol carnitine/100 g body weight approx. 80% of the injected carnitine was in the extracellular fluid compartment and 5% in the liver. Plasma, liver and soleus total carnitine contents were increased 6 h after administration of 16.7 mumols carnitine/100 g body weight. 6 h post-administration, 37% of the dose was recovered in the urine, 12% remained in the extracellular compartment, 9% was in the liver and 22% was distributed in the skeletal muscle. In liver and plasma, short chain acylcarnitine content was increased 5 min and 6 h post injection as compared with controls. Plasma, liver, skeletal muscle and heart carnitine contents were not different from control levels 48 h after carnitine administration. The results demonstrate that single, bolus administration of carnitine is effective in increasing urinary acylcarnitine elimination. While liver carnitine content is doubled for at least 6 h following carnitine administration, skeletal muscle and heart carnitine pools are only modestly perturbed following a single intravenous carnitine dose. The dilution of [14C]carnitine specific activity in the urine of treated animals suggests that tissue-blood carnitine or acylcarnitine exchange systems contribute to overall carnitine homeostasis following carnitine administration.  相似文献   

17.
The purpose of this study was to determine whether diosgenin suppresses cholesterol absorption in rats, and to examine relevant changes in cholesterol and bile acid metabolism. Diosgenin fed with the diet for 1 week inhibited cholesterol absorption as determined by the serum isotope ratio technique, as well as by measuring in the feces the amount of unabsorbed radioactivity from orally administered [3H]cholesterol. In addition, diosgenin suppressed the serum and liver uptake of radioactivity from co-administered [3H]cholesterol as well as the accumulation of liver cholesterol in the cholesterol-fed rat; diosgenin was substantially more active than cholestyramine or beta-sitosterol. In vitro, diosgenin had no effect on the activity of rat pancreatic esterase. Diosgenin decreased the elevated cholesterol in serum LDL and elevated cholesterol in the HDL fraction of cholesterol-fed rats; diosgenin had no effect on serum cholesterol in normocholesterolemic rats. In contrast to cholestyramine, diosgenin markedly increased neutral sterol excretion without altering bile acid excretion; in vitro, diosgenin had no effect on bile acid binding. Diosgenin treatment increased hepatic and intestinal cholesterol synthesis as well as the activity of hepatic HMG CoA reductase. This was accompanied by increased biliary concentration of cholesterol, but not of bile acids. Diosgenin had no effect on cholesterol synthesis when added to normal rat liver homogenates. It was concluded that diosgenin interferes with the absorption of cholesterol of both exogenous and endogenous origin; such interference is accompanied by derepressed, i.e., increased, rates of hepatic and intestinal cholesterol synthesis. The increased unabsorbed cholesterol together with enhanced secretion of cholesterol into bile resulted in increased excretion of neutral sterols without affecting the biliary and fecal excretion of bile acids.  相似文献   

18.
To evaluate bile acid (BA) metabolism in detail, we established a method for analyzing BA composition in various tissues and intestinal contents using ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS). Twenty-two individual BAs were determined simultaneously from extracts. We applied this method to define the differences in BA metabolism between two rat strains, WKAH and DA. The amount of total bile acids (TBAs) in the liver was significantly higher in WKAH than in DA rats. In contrast, TBA concentration in jejunal content, cecal content, colorectal content, and feces was higher in DA rats than in WKAH rats. Nearly all BAs in the liver were in the taurine- or glycine-conjugated form in DA rats, and the proportion of conjugated liver BAs was up to 75% in WKAH rats. Similar trends were observed for the conjugation rates in bile. The most abundant secondary BA in cecal content, colorectal content, and feces was hyodeoxycholic acid in WKAH rats and omega-muricholic acid in DA rats. Analyzing detailed BA profiles, including conjugation status, in a single run is possible using UPLC/ESI-MS. This method will be useful for investigating the roles of BA metabolism under physiological and pathological conditions.  相似文献   

19.
The purpose of this investigation was to determine the morphological, physiological and biochemical effects of gentamicin upon the rat kidney following prolonged administration of the antibiotic. Sprague-Dawley and Fischer 344 strain rats were given 3, 10, 20 or 40 mg gentamicin per kg body weight per day for 28 days. Morphologic alterations were evaluated by light and electron microscopy. Functional parameters included glomerular filtration rate, PAH secretion, renal plasma flow, sodium reabsorption, potassium excretion, urine volume and protein, and serum urea nitrogen. Oxidative metabolism of mitochondrial fractions from renal cortical homogenates was evaluated by oxygen uptake and P:O ratios. The results indicate focal proximal tubular injury, decreased tubular maximum secretion of PAH, and altered oxidative metabolism at the higher dose levels of gentamicin. Neither elevations of serum urea nitrogen nor alterations in glomerular filtration rate, renal plasma flow, or sodium or potassium excretion were observed. Thus, it appears that high dose levels (40 mg per kg per day) alter the structure and function of some proximal tubular segments when administered over prolonged periods. The alterations appear reversible. Although nephro-toxicity is identified under these conditions in rats, extrapolation to human patients usually receiving much lower doses must be guarded.  相似文献   

20.
Single and chronic administration of a low dose of nitrazepam (1 mg/kg) had no effect on sleep cycles in rats. A single injection of a high dose (10 mg/kg) of nitrazepam resulted in prolongation of the total duration of synchronized sleep with a corresponding shortening of desynchronized (paradoxical) sleep. The number of sleep cycles was reduced. Chronic injections of nitrazepam (for 7-14 days) in a dose of 10 mg/kg evoked a gradual prolongation of the duration of paradoxical sleep and an increase in number of sleep cycles. After discontinuance of a long-term administration of nitrazepam (1 mg/kg or 10 mg/kg) prolongation of desynchronized sleep and an increase in the number of sleep cycles were more pronounced in comparison with the last day of chronic administration of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号