首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Emerson, Geoffrey G., and Steven S. Segal. Alignment ofmicrovascular units along skeletal muscle fibers of hamster retractor.J. Appl. Physiol. 82(1): 42-48, 1997.When muscle fibers contract, blood flow requirements increasealong their entire length. However, the organization of capillaryperfusion along muscle fibers is unclear. The microvascular unit (MVU)is defined as a terminal arteriole and the group of capillaries itsupplies. We investigated whether neighboring MVUs along the fiber axis perfused the same group of muscle fibers by using the parallel-fibered retractor muscle. Hamsters were anesthetized and perfused with Microfilto visualize MVUs relative to muscle fibers. Fields of study, whichencompassed five to seven neighboring MVUs along a muscle fiber, werechosen from the interior of muscles and along muscle edges. On average,MVUs were 1 mm in length, 0.50 mm in width, and 0.1 mm deep; segmentsof ~30 fibers were contained in this tissue volume of 0.05 mm3 (20 MVUs/mg muscle). The totaldistance across muscle fibers encompassed by a pair of MVUs isdesignated "union" (U); the fraction of this distance common toboth MVUs is designated "intersection" (I). The ratio of I to Ufor the widths of neighboring MVUs provides an index of MVU alignmentalong muscle fibers (e.g., I/U = 1.0 indicates complete alignment,where the fibers perfused by one MVU are the same as those perfused bythe neighboring MVU). We found that I/U along muscle edges (0.71 ± 0.02) was greater (P < 0.05) thanthe ratio measured within muscles (0.66 ± 0.02). A model predicteda maximum I/U of 0.58 with random MVU alignment. Thus measured valueswere closer to random than to complete alignment. These findingsindicate that an increase in blood flow along muscle fibers requiresthe perfusion of many MVUs and imply that vasodilation is coordinatedamong the parent arterioles from which corresponding MVUsarise.

  相似文献   

2.
The number of perfused capillaries in skeletal muscle varies with muscle activation. With increasing activation, muscle fibers are recruited as motor units consisting of widely dispersed fibers, whereas capillaries are recruited as groups called microvascular units (MVUs) that supply several adjacent fibers. In this study, a theoretical model was used to examine the consequences of this spatial mismatch between the functional units of muscle activation and capillary perfusion. Diffusive oxygen transport was simulated in cross sections of skeletal muscle, including several MVUs and fibers from several motor units. Four alternative hypothetical mechanisms controlling capillary perfusion were considered. First, all capillaries adjacent to active fibers are perfused. Second, all MVUs containing capillaries adjacent to active fibers are perfused. Third, each MVU is perfused whenever oxygen levels at its feed arteriole fall below a threshold value. Fourth, each MVU is perfused whenever the average oxygen level at its capillaries falls below a threshold value. For each mechanism, the dependence of the fraction of perfused capillaries on the level of muscle activation was predicted. Comparison of the results led to the following conclusions. Control of perfusion by MVUs increases the fraction of perfused capillaries relative to control by individual capillaries. Control by arteriolar oxygen sensing leads to poor control of tissue oxygenation at high levels of muscle activation. Control of MVU perfusion by capillary oxygen sensing permits adequate tissue oxygenation over the full range of activation without resulting in perfusion of all MVUs containing capillaries adjacent to active fibers.  相似文献   

3.
Mateika, J. H., E. Essif, and R. F. Fregosi. Effect ofhypoxia on abdominal motor unit activities in spontaneously breathingcats. J. Appl. Physiol. 81(6):2428-2435, 1996.These experiments were designed to examine thebehavior of external oblique motor units in spontaneously breathingcats during hypoxia and to estimate the contribution of recruitment andrate coding to changes in the integrated external obliqueelectromyogram (iEMG). Motor unit activities in the external obliquemuscle were identified while the cats expired against a positiveend-expiratory pressure (PEEP) of 1-2.5cmH2O. After localization of unitactivity, PEEP was removed, and recordings were made continuously for3-4 min during hyperoxia, normoxia, and hypoxia. A total of 35 single motor unit activities were recorded from 10 cats. At each level of fractional concentration of end-tidalO2, the motor unit activity wascharacterized by an abrupt increase in mean discharge frequency, at~30% of expiratory time, which then continued to increase gradually or remained constant before declining abruptly at the end ofexpiration. The transition from hyperoxia to normoxia and hypoxia wasaccompanied by an increase in the number of active motor units (16 of35, 20 of 35, and 29 of 35, respectively) and by an increase in the mean discharge frequency of those units active during hyperoxia. Thechanges in motor unit activity recorded during hypoxia were accompaniedby a significant increase in the average peak amplitude of theabdominal iEMG. Linear regression analysis revealed that motor unitrate coding was responsible for close to 60% of the increase in peakiEMG amplitude. The changes in abdominal motor unit activity and theexternal oblique iEMG that occurred during hypoxia were abolished ifthe arterial PCO2 was allowed tofall. We conclude that external oblique motor units are activated during the latter two-thirds of expiration and that rate coding andrecruitment contribute almost equally to the increase in expiratory muscle activity that occurs with hypoxia. In addition, the excitation of abdominal motor units during hypoxia is critically dependent onchanges in CO2 and/ortidal volume.

  相似文献   

4.
Hanger, Christopher C., Robert G. Presson, Jr., Osamu Okada,Steven J. Janke, John J. Watkins, Wiltz W. Wagner, Jr., and Ronald L. Capen. Computer determination of perfusion patterns in pulmonarycapillary networks. J. Appl. Physiol.82(4): 1283-1289, 1997.Individual pulmonary capillaries are notsteadily perfused. By using in vivo microscopy, it can readily bedemonstrated that perfusion continually switches between capillarysegments and between portions of the network within a single alveolarwall. These changes in capillary perfusion occur even when upstream pressure and flow are constant. Flow switching between capillary segments in the absence of hemodynamic changes in large upstream vessels suggests that capillary perfusion patterns could be random. Tocalculate the probability that perfusion patterns could occur bychance, it is necessary to know the total number of possible perfusionpatterns in a given capillary network. We developed a computer programthat can determine every possible perfusion pattern for any givencapillary network, and from that information we can calculate whetherperfusion of individual segments in the network is random. With theresults of the computer program, we have obtained statistical evidencethat some capillary segments in a network are nonrandomly perfused.

  相似文献   

5.
Capillary recruitment and transit time in the rat lung   总被引:1,自引:0,他引:1  
Presson, Robert G., Jr., Thomas M. Todoran, Bracken J. DeWitt, Ivan F. McMurtry, and Wiltz W. Wagner, Jr.Capillary recruitment and transit time in the rat lung.J. Appl. Physiol. 83(2): 543-549, 1997.Increasing pulmonary blood flow and the associated rise incapillary perfusion pressure cause capillary recruitment. The resultingincrease in capillary volume limits the decrease in capillary transittime. We hypothesize that small species with relatively high restingmetabolic rates are more likely to utilize a larger fraction ofgas-exchange reserve at rest. Without reserve, we anticipate thatcapillary transit time will decrease rapidly as pulmonary blood flowrises. To test this hypothesis, we measured capillary recruitment andtransit time in isolated rat lungs. As flow increased, transit timedecreased, and capillaries were recruited. The decrease in transit timewas limited by an increase in the homogeneity of the transit time distribution and an increased capillary volume due, in part, to recruitment. The recruitable capillaries, however, were nearly completely perfused at flow rates and pressures that were less thanbasal for the intact animal. This suggests that a limited reserve ofrecruitable capillaries in the lungs of species with high restingmetabolic rates may contribute to their inability to raiseO2 consumption manyfold abovebasal values.

  相似文献   

6.
Van Den Bergh, Adrianus J., Sibrand Houtman, ArendHeerschap, Nancy J. Rehrer, Hendrikus J. Van Den Boogert, BerendOeseburg, and Maria T. E. Hopman. Muscle glycogen recovery afterexercise during glucose and fructose intake monitored by13C-NMR. J. Appl.Physiol. 81(4): 1495-1500, 1996.The purpose of this study was to examine muscle glycogen recovery with glucose feeding(GF) compared with fructose feeding (FF) during the first 8 h afterpartial glycogen depletion by using13C-nuclear magneticresonance (NMR) on a clinical 1.5-T NMR system. After measurement of the glycogen concentration of the vastus lateralis (VL) muscle in seven male subjects, glycogen stores of the VLwere depleted by bicycle exercise. During 8 h after completion ofexercise, subjects were orally given either GF or FF while the glycogencontent of the VL was monitored by13C-NMR spectroscopy every secondhour. The muscular glycogen concentration was expressed as a percentageof the glycogen concentration measured before exercise. The glycogenrecovery rate during GF (4.2 ± 0.2%/h) was significantly higher(P < 0.05) compared withvalues during FF (2.2 ± 0.3%/h). This study shows that1) muscle glycogen levels areperceptible by 13C-NMRspectroscopy at 1.5 T and 2) theglycogen restoration rate is higher after GF compared with after FF.

  相似文献   

7.
Evans, Allison B., Larry W. Tsai, David A. Oelberg, HomayounKazemi, and David M. Systrom. Skeletal muscle ECF pH error signalfor exercise ventilatory control. J. Appl.Physiol. 84(1): 90-96, 1998.An autonomic reflexlinking exercising skeletal muscle metabolism to central ventilatorycontrol is thought to be mediated by neural afferents having freeendings that terminate in the interstitial fluid of muscle. Todetermine whether changes in muscle extracellular fluid pH(pHe) can provide an errorsignal for exercise ventilatory control,pHe was measured duringelectrically induced contraction by31P-magnetic resonancespectroscopy and the chemical shift of a phosphorylated, pH-sensitivemarker that distributes to the extracellular fluid (phenylphosphonicacid). Seven lightly anesthetized rats underwentunilateral continuous 5-Hz sciatic nerve stimulation in an 8.45-Tnuclear magnetic resonance magnet, which resulted in a mixed lacticacidosis and respiratory alkalosis, with no net change in arterial pH.Skeletal muscle intracellular pH fell from 7.30 ± 0.03 units atrest to 6.72 ± 0.05 units at 2.4 min of stimulation and then roseto 7.05 ± 0.01 units (P < 0.05), despite ongoing stimulation and muscle contraction.Despite arterial hypocapnia, pHeshowed an immediate drop from its resting baseline of 7.40 ± 0.01 to 7.16 ± 0.04 units (P < 0.05)and remained acidic throughout the stimulation protocol. During the on-and off-transients for 5-Hz stimulation, changes in the pH gradientbetween intracellular and extracellular compartments suggestedtime-dependent recruitment of sarcolemmal ion-transport mechanisms.pHe of exercising skeletal musclemeets temporal and qualitative criteria necessary for a ventilatorymetaboreflex mediator in a setting where arterial pH doesnot.

  相似文献   

8.
Williamson, J. W., D. B. Friedman, J. H. Mitchell, N. H. Secher, and L. Friberg. Mechanisms regulating regional cerebral activation during dynamic handgrip in humans. J. Appl.Physiol. 81(5): 1884-1890, 1996.Dynamic handmovement increases regional cerebral blood flow (rCBF) of thecontralateral motor sensory cortex (MS1). This increase is eliminatedby regional anesthesia of the working arm, indicating the importance ofafferent neural input. The purpose of this study was to determine thespecific type of afferent input required for this cerebral activation. The rCBF was measured at +5.0 and +9.0 cm above the orbitomeatal (OM)plane in 13 subjects during 1) rest;2) dynamic left-hand contractions;3) postcontraction ischemia(metaboreceptor afferents); and 4)biceps brachii tendon vibration (muscle spindles). The rCBF increasedonly during dynamic hand contraction; contralateral MS1 (OM +9) by 15%to 64 ± 8.6 ml · 100 g1 · min1(P < 0.05); supplementary motor area(OM +9) by 11% to 69 ± 9.8 ml · 100 g1 · min1(P < 0.05); and there were alsobilateral increases at MS2 (OM +5) [by 16% to 64 ± 8.6 ml · 100 g1 · min1(P < 0.05)]. These findingssuggest that the rCBF increase during dynamic hand contraction does notrequire neural input from muscle spindles or metabolically sensitivenerve fibers, although the involvement of mechanoreceptors (group IIIor Ib) cannot be excluded.

  相似文献   

9.
McCall, G. E., W. C. Byrnes, A. Dickinson, P. M. Pattany,and S. J. Fleck. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training.J. Appl. Physiol. 81(5):2004-2012, 1996.Twelve male subjects with recreationalresistance training backgrounds completed 12 wk of intensifiedresistance training (3 sessions/wk; 8 exercises/session; 3 sets/exercise; 10 repetitions maximum/set). All major muscle groupswere trained, with four exercises emphasizing the forearm flexors.After training, strength (1-repetition maximum preacher curl) increasedby 25% (P < 0.05). Magneticresonance imaging scans revealed an increase in the biceps brachiimuscle cross-sectional area (CSA) (from 11.8 ± 2.7 to 13.3 ± 2.6 cm2;n = 8;P < 0.05). Muscle biopsies of thebiceps brachii revealed increases(P < 0.05) in fiber areas for type I(from 4,196 ± 859 to 4,617 ± 1,116 µm2;n = 11) and II fibers (from 6,378 ± 1,552 to 7,474 ± 2,017 µm2;n = 11). Fiber number estimated fromthe above measurements did not change after training (293.2 ± 61.5 × 103 pretraining; 297.5 ± 69.5 × 103 posttraining;n = 8). However, the magnitude ofmuscle fiber hypertrophy may influence this response because thosesubjects with less relative muscle fiber hypertrophy, but similarincreases in muscle CSA, showed evidence of an increase in fibernumber. Capillaries per fiber increased significantly(P < 0.05) for both type I(from 4.9 ± 0.6 to 5.5 ± 0.7;n = 10) and II fibers (from 5.1 ± 0.8 to 6.2 ± 0.7; n = 10). Nochanges occurred in capillaries per fiber area or muscle area. Inconclusion, resistance training resulted in hypertrophy of the totalmuscle CSA and fiber areas with no change in estimated fiber number,whereas capillary changes were proportional to muscle fiber growth.

  相似文献   

10.
Bangart, J. J., J. J. Widrick, and R. H. Fitts. Effectof intermittent weight bearing on soleus fiber force-velocity-power andforce-pCa relationships. J. Appl.Physiol. 82(6): 1905-1910, 1997.Ratpermeabilized type I soleus fibers displayed a 33% reduction in peakpower output and a 36% increase in the freeCa2+ concentration required forone-half maximal activation after 14 days of hindlimb non-weightbearing (NWB). We examined the effectiveness of intermittent weightbearing (IWB; consisting of four 10-min periods of weight bearing/day)as a countermeasure to these functional changes. At peak power output,type I fibers from NWB animals produced 54% less force and shortenedat a 56% greater velocity than did type I fibers from controlweight-bearing animals while type I fibers from the IWB rats produced26% more absolute force than did fibers from the NWB group andshortened at a velocity that was only 80% of the NWB group mean. As aresult, no difference was observed in the average peak power of fibers from the IWB and NWB animals. Hill plot analysis of force-pCa relationships indicated that fibers from the IWB group required similarlevels of free Ca2+ to reachhalf-maximal activation in comparison to fibers from the weight-bearinggroup. However, at forces <50% of peak force, the force-pCa curvefor fibers from the IWB animals clearly fell between the relationshipsobserved for the other two groups. In summary, IWB treatments1) attenuated the NWB-inducedreduction in fiber Ca2+sensitivity but 2) failed to preventthe decline in peak power that occurs during NWB because of opposingeffects on fiber force (an increase vs. NWB) and shortening velocity (adecrease vs. NWB).

  相似文献   

11.
Importance of airway blood flow on particle clearance from the lung   总被引:2,自引:0,他引:2  
Wagner, Elizabeth M., and W. Michael Foster. Importanceof airway blood flow on particle clearance from the lung.J. Appl. Physiol. 81(5):1878-1883, 1996.The role of the airway circulation insupporting mucociliary function has been essentially unstudied. Weevaluated the airway clearance of inert, insoluble particles inanesthetized ventilated sheep (n = 8),in which bronchial perfusion was controlled, to determine whetherairway mucosal blood flow is essential for maintaining surfacetransport of particles through airways. The bronchial branch of thebronchoesophageal artery was cannulated and perfused with autologousblood at control flow (0.6 ml · min1 · kg1)or perfusion was stopped. With the sheep in a supine position and aftera steady-state 133Xe ventilationscan for designation of lung zones of interest, an inert99mTc-labeled sulfur colloidaerosol (2.1-µm diameter) was deposited in the lung. The clearancekinetics of the radiolabeled particles were determined from theactivity-time data obtained for right and left lung zones. At 60 minpostdeposition of aerosol, average airway particle retention forcontrol bronchial blood flow conditions was 57 ± 7 (SE)% for theright and 53 ± 8% for the left lung zones. Clearance of particleswas significantly impaired when bronchial blood flow was stopped, e.g.,right and left lung zones averaged 77 ± 6 and 76 ± 7% at 60 min, respectively (P < 0.05). Thesedata demonstrate a significant influence of the bronchial circulation on mucociliary transport of insoluble particles. Potential mechanisms that may account for these results include the importance of the bronchial circulation for nutrient flow, maintenance of airway walltemperature and humidity, and release of mediators and sequelae associated with tissue ischemia.

  相似文献   

12.
Chen, H. F., B. P. Lee, and Y. R. Kou. Mechanisms ofstimulation of vagal pulmonary C fibers by pulmonary air embolism indogs. J. Appl. Physiol. 82(3):765-771, 1997.We investigated the involvement of thecyclooxygenase metabolites and hydroxyl radical (· OH) in thestimulation of vagal pulmonary C fibers (PCs) by pulmonary air embolism(PAE). Impulses were recorded from PCs in 51 anesthetized, open-chest,and artificially ventilated dogs. Fifty of 59 PCs were stimulated byinfusion of air into the right atrium (0.2 ml · kg1 · min1for 10 min). As a group (n = 59), PCactivity increased from a baseline of 0.4 ± 0.1 to a peak of 1.7 ± 0.2 impulses/s during the period from 1 min before to 2 min afterthe termination of PAE induction. In PCs initially stimulated by PAEinduction, PAE was repeated after the intervening treatment (iv) withsaline (n = 9), ibuprofen (acyclooxygenase inhibitor; n = 11), ordimethylthiourea (a · OH scavenger;n = 12). The responses of PCs to PAEwere not altered by saline vehicle but were abolished by ibuprofen and significantly attenuated by dimethylthiourea. Although hyperinflation of the lungs reversed the PAE-induced bronchomotor responses, it didnot reverse the stimulation of PCs (n = 8). These results suggest that 1)cyclooxygenase products are necessary for the stimulation of PCs byPAE, whereas changes in lung mechanics are not, and2) the functional importance ofcyclooxygenase products may be mediated in part through the formationof · OH.

  相似文献   

13.
Toussaint, Jean-François, Kenneth K. Kwong, FidelisM'Kparu, Robert M. Weisskoff, Paul J. LaRaia, and Howard L. Kantor. Interrelationship of oxidative metabolism and local perfusion demonstrated by NMR in human skeletal muscle. J. Appl.Physiol. 81(5): 2221-2228, 1996.Using nuclearmagnetic resonance (NMR), we have examined the relationship ofhigh-energy phosphate metabolism and perfusion in human soleus andgastrocnemius muscles. With 31P-NMR spectroscopy, we monitoredphosphocreatine (PCr) decay and recovery in eight normal volunteers andfour heart failure patients performing ischemic plantar flexion. Byusing echo-planar imaging, perfusion was independently measured by alocal [inversion-recovery (T1-flow)] and a regionaltechnique (NMR-plethysmography). After correction for its pHdependence, PCr recovery time constant is 27.5 ± 8.0 s innormal volunteers, with mean flow 118 ± 75 (soleus andgastrocnemius T1-flow) and 30.2 ± 9.7 ml · 100 ml1 · min1(NMR-plethysmography-flow). We demonstrate a positive correlation between PCr time constant and local perfusion given byy = 50  0.15x(r2 = 0.68, P = 0.01) for the 8 normal subjects,and y = 64  0.24x (r2 = 0.83, P = 0.0001) for the 12 subjectsrecruited in the study. Regional perfusion techniques also show asignificant but weaker correlation. Using this totally noninvasivemethod, we conclude that aerobic ATP resynthesis is related to themagnitude of perfusion, i.e., O2availability, and demonstrate that magnetic resonance imaging andmagnetic resonance spectroscopy together can accurately assess musclefunctional status.

  相似文献   

14.
Barman, Scott A., Laryssa L. McCloud, John D. Catravas, andIna C. Ehrhart. Measurement of pulmonary blood flow by fractalanalysis of flow heterogeneity in isolated canine lungs. J. Appl. Physiol. 81(5):2039-2045, 1996.Regional heterogeneity of lung blood flow can bemeasured by analyzing the relative dispersion (RD) of mass(weight)-flow data. Numerous studies have shown that pulmonary bloodflow is fractal in nature, a phenomenon that can be characterized bythe fractal dimension and the RD for the smallest realizable volumeelement (piece size). Although information exists for theapplicability of fractal analysis to pulmonary blood flow in wholeanimal models, little is known in isolated organs. Therefore, thepresent study was done to determine the effect of blood flow rate onthe distribution of pulmonary blood flow in the isolated blood-perfusedcanine lung lobe by using fractal analysis. Four different radiolabeledmicrospheres (141Ce,95Nb,85Sr, and51Cr), each 15 µm in diameter,were injected into the pulmonary lobar artery of isolated canine lunglobes (n = 5) perfused at fourdifferent flow rates ( flow1 = 0.42 ± 0.02 l/min;flow2 = 1.12 ± 0.07 l/min;flow 3 = 2.25 ± 0.17 l/min; flow 4 = 2.59 ± 0.17 l/min), and the pulmonary blood flow distribution was measured. Theresults of the present study indicate that under isogravimetric bloodflow conditions, all regions of horizontally perfused isolated lunglobes received blood flow that was preferentially distributed to themost distal caudal regions of the lobe. Regional pulmonary blood flowin the isolated perfused canine lobe was heterogeneous and fractal innature, as measured by the RD. As flow rates increased, fractal dimension values (averaging 1.22 ± 0.08) remained constant, whereas RD decreased, reflecting more homogeneous blood flowdistribution. At any given blood flow rate, high-flow areas of the lobereceived a proportionally larger amount of regional flow, suggestingthat the degree of pulmonary vascular recruitment may also be spatially related.

  相似文献   

15.
Oelberg, David A., Allison B. Evans, Mirko I. Hrovat, PaulP. Pappagianopoulos, Samuel Patz, and David M. Systrom. Skeletal muscle chemoreflex and pHi inexercise ventilatory control. J. Appl.Physiol. 84(2): 676-682, 1998.To determinewhether skeletal muscle hydrogen ion mediates ventilatory drive inhumans during exercise, 12 healthy subjects performed three bouts ofisotonic submaximal quadriceps exercise on each of 2 days in a 1.5-Tmagnet for 31P-magnetic resonancespectroscopy(31P-MRS). Bilaterallower extremity positive pressure cuffs were inflated to 45 Torr duringexercise (BLPPex) or recovery(BLPPrec) in a randomized orderto accentuate a muscle chemoreflex. Simultaneous measurements were madeof breath-by-breath expired gases and minute ventilation, arterializedvenous blood, and by 31P-MRS ofthe vastus medialis, acquired from the average of 12 radio-frequencypulses at a repetition time of 2.5 s. WithBLPPex, end-exercise minuteventilation was higher (53.3 ± 3.8 vs. 37.3 ± 2.2 l/min;P < 0.0001), arterializedPCO2 lower (33 ± 1 vs. 36 ± 1 Torr; P = 0.0009), and quadricepsintracellular pH (pHi) more acid (6.44 ± 0.07 vs. 6.62 ± 0.07; P = 0.004), compared withBLPPrec. Bloodlactate was modestly increased withBLPPex but without a change inarterialized pH. For each subject, pHi was linearly relatedto minute ventilation during exercise but not to arterialized pH. Thesedata suggest that skeletal muscle hydrogen ion contributes to theexercise ventilatory response.

  相似文献   

16.
Thompson, L. V., and J. A. Shoeman. Contractilefunction of single muscle fibers after hindlimb unweighting in aged rats. J. Appl. Physiol. 84(1):229-235, 1998.This investigation determined how muscle atrophyproduced by hindlimb unweighting (HU) alters the contractile functionof single muscle fibers from older animals (30 mo). After 1 wk of HU,small bundles of fibers were isolated from the soleus muscles and thedeep region of the lateral head of the gastrocnemius muscles. Singleglycerinated fibers were suspended between a motor lever and forcetransducer, functional properties were studied, and the myosin heavychain (MHC) composition was determined electrophoretically. After HU, the diameter of type I MHC fibers of the soleus declined (88 ± 2 vs. 80 ± 4 µm) and reductions were observed in peak active force (47 ± 3 vs. 28 ± 3 mg) and peak specific tension(Po; 80 ± 5 vs. 56 ± 5 kN/m2). The maximal unloadedshortening velocity increased. The type I MHC fibers from thegastrocnemius showed reductions in diameter (14%), peak active force(41%), and Po (24%), whereas thetype IIa MHC fibers showed reductions in peak active force andPo. Thus 1 wk ofinactivity has a significant effect on the force-generating capacity ofsingle skeletal muscle fibers from older animals in a fibertype-specific manner (type I MHC > type IIa MHC > type I-IIa MHC).The decline in the functional properties of single skeletal musclefibers in the older animals appears to be more pronounced than what hasbeen reported in younger animal populations.

  相似文献   

17.
Delp, Michael D., Changping Duan, John P. Mattson, andTimothy I. Musch. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure.J. Appl. Physiol. 83(4):1291-1299, 1997.One of the primary consequences of leftventricular dysfunction (LVD) after myocardial infarction is adecrement in exercise capacity. Several factors have been hypothesizedto account for this decrement, including alterations in skeletal musclemetabolism and aerobic capacity. The purpose of this study was todetermine whether LVD-induced alterations in skeletal muscle enzymeactivities, fiber composition, and fiber size are1) generalized in muscles orspecific to muscles composed primarily of a given fiber type and2) related to the severity of theLVD. Female Wistar rats were divided into three groups: sham-operatedcontrols (n = 13) and rats withmoderate (n = 10) and severe(n = 7) LVD. LVD was surgicallyinduced by ligating the left main coronary artery and resulted inelevations (P < 0.05) in leftventricular end-diastolic pressure (sham, 5 ± 1 mmHg; moderate LVD,11 ± 1 mmHg; severe LVD, 25 ± 1 mmHg). Moderate LVDdecreased the activities of phosphofructokinase (PFK) and citratesynthase in one muscle composed of type IIB fibers but did not modifyfiber composition or size of any muscle studied. However, severe LVDdiminished the activity of enzymes involved in terminal and-oxidation in muscles composed primarily of type I fibers, type IIAfibers, and type IIB fibers. In addition, severe LVD induced areduction in the activity of PFK in type IIB muscle, a 10% reductionin the percentage of type IID/X fibers, and a corresponding increase inthe portion of type IIB fibers. Atrophy of type I fibers, type IIAfibers, and/or type IIB fibers occurred in soleus and plantarismuscles of rats with severe LVD. These data indicate that rats withsevere LVD after myocardial infarction exhibit1) decrements in mitochondrialenzyme activities independent of muscle fiber composition,2) a reduction in PFK activity in type IIB muscle, 3) transformationof type IID/X to type IIB fibers, and4) atrophy of type I, IIA, and IIBfibers.

  相似文献   

18.
Myburgh, Kathryn H., and Roger Cooke. Response ofcompressed skinned skeletal muscle fibers to conditions that simulate fatigue. J. Appl. Physiol. 82(4):1297-1304, 1997.During fatigue, muscles become weaker, slower,and more economical at producing tension. Studies of skinned musclefibers can explain some but not all of these effects, and, inparticular, they are less economical in conditions that simulatefatigue. We investigated three factors that may contribute to thedifferent behavior of skinned fibers. 1) Skinned fibers have increasedmyofilament lattice spacing, which is reversible by osmoticcompression. 2) A myosin subunit becomes phosphorylated during fatigue.3) Inosine 5-monophosphate (IMP) accumulates during fatigue. We tested the response ofphosphorylated and unphosphorylated single skinned fibers (isometrictension, contraction velocity, and adenosinetriphosphatase activity) to changes in lattice spacing (0-5% dextran) and IMP (0-5 mM)in the presence of altered concentrations ofPi (3-25 mM),H+ (pH 7-6.2), and ADP(0-5 mM). The response of maximally activated skinned fibers tothe direct metabolites of ATP hydrolysis is not altered by osmoticcompression, phosphorylating myosin subunits, or increasing IMPconcentration. These factors, therefore, do not explain the discrepancybetween intact and skinned fibers during fatigue.

  相似文献   

19.
Favero, Terence G., Anthony C. Zable, David Colter, andJonathan J. Abramson. Lactate inhibits Ca2+-activatedCa2+-channel activity from skeletal muscle sarcoplasmicreticulum. J. Appl. Physiol. 82(2): 447-452, 1997.Sarcoplasmic reticulum (SR) Ca2+-release channelfunction is modified by ligands that are generated during about ofexercise. We have examined the effects of lactate on Ca2+-and caffeine-stimulated Ca2+ release,[3H]ryanodine binding, and singleCa2+-release channel activity of SR isolated from rabbitwhite skeletal muscle. Lactate, at concentrations from 10 to 30 mM,inhibited Ca2+- and caffeine-stimulated[3H]ryanodine binding to and inhibited Ca2+-and caffeine-stimulated Ca2+ release from SR vesicles.Lactate also inhibited caffeine activation of single-channel activityin bilayer reconstitution experiments. These findings suggest thatintense muscle activity, which generates high concentrations oflactate, will disrupt excitation-contraction coupling. This may lead todecreases in Ca2+ transients promoting a decline in tensiondevelopment and contribute to muscle fatigue.

  相似文献   

20.
Lynch, Gordon S., Alan Hayes, Siun P. Campbell, and David A. Williams. Effects of2-agonist administration andexercise on contractile activation of skeletal muscle fibers.J. Appl. Physiol. 81(4):1610-1618, 1996.Clenbuterol, a2-adrenoceptor agonist, hastherapeutic potential for the treatment of muscle-wasting diseases, yetits effects, especially at the single-fiber level, have not been fullycharacterized. Male C57BL/10 mice were allocated to three groups:Control-Treated mice were administered clenbuterol (2 mg · kg1 · day1)via their drinking water for 15 wk; Trained-Treated mice underwent low-intensity training (unweighted swimming, 5 days/wk, 1 h/day) inaddition to receiving clenbuterol; and Control mice were sedentary anduntreated. Contractile characteristics were determined on membrane-permeabilized fibers from the extensor digitorum longus (EDL)and soleus muscles. Fast fibers from the EDL and soleus muscles ofTreated mice exhibited decreases inCa2+ sensitivity. Enduranceexercise offset clenbuterol's effects, demonstrated by similarCa2+ sensitivities in theTrained-Treated and Control groups. Long-term clenbuterol treatment didnot affect the normalized maximal tension of fast or slow fibers butincreased the proportion of fast fibers in the soleus muscle. Trainingincreased the proportion of fibers with high and intermediate succinatedehydrogenase activity in the EDL and soleus muscles, respectively. Ifclenbuterol is to be used for treating muscle-wasting disorders, someform of low-intensity exercise might be encouraged such thatpotentially deleterious slow-to-fast fiber type transformations areminimized. Indeed, in the mouse, low-intensity exercise appears toprevent these effects.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号