首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
RNA polymerase II (Pol II) is a well‐characterized DNA‐dependent RNA polymerase, which has also been reported to have RNA‐dependent RNA polymerase (RdRP) activity. Natural cellular RNA substrates of mammalian Pol II, however, have not been identified and the cellular function of the Pol II RdRP activity is unknown. We found that Pol II can use a non‐coding RNA, B2 RNA, as both a substrate and a template for its RdRP activity. Pol II extends B2 RNA by 18 nt on its 3′‐end in an internally templated reaction. The RNA product resulting from extension of B2 RNA by the Pol II RdRP can be removed from Pol II by a factor present in nuclear extracts. Treatment of cells with α‐amanitin or actinomycin D revealed that extension of B2 RNA by Pol II destabilizes the RNA. Our studies provide compelling evidence that mammalian Pol II acts as an RdRP to control the stability of a cellular RNA by extending its 3′‐end.  相似文献   

10.
11.
BACKGROUND: Members of the Pol II family of DNA polymerases are responsible for chromosomal replication in eukaryotes, and carry out highly processive DNA replication when attached to ring-shaped processivity clamps. The sequences of Pol II polymerases are distinct from those of members of the well-studied Pol I family of DNA polymerases. The DNA polymerase from the archaebacterium Desulfurococcus strain Tok (D. Tok Pol) is a member of the Pol II family that retains catalytic activity at elevated temperatures. RESULTS: The crystal structure of D. Tok Pol has been determined at 2.4 A resolution. The architecture of this Pol II type DNA polymerase resembles that of the DNA polymerase from the bacteriophage RB69, with which it shares less than approximately 20% sequence identity. As in RB69, the central catalytic region of the DNA polymerase is located within the 'palm' subdomain and is strikingly similar in structure to the corresponding regions of Pol I type DNA polymerases. The structural scaffold that surrounds the catalytic core in D. Tok Pol is unrelated in structure to that of Pol I type polymerases. The 3'-5' proofreading exonuclease domain of D. Tok Pol resembles the corresponding domains of RB69 Pol and Pol I type DNA polymerases. The exonuclease domain in D. Tok Pol is located in the same position relative to the polymerase domain as seen in RB69, and on the opposite side of the palm subdomain compared to its location in Pol I type polymerases. The N-terminal domain of D. Tok Pol has structural similarity to RNA-binding domains. Sequence alignments suggest that this domain is conserved in the eukaryotic DNA polymerases delta and epsilon. CONCLUSIONS: The structure of D. Tok Pol confirms that the modes of binding of the template and extrusion of newly synthesized duplex DNA are likely to be similar in both Pol II and Pol I type DNA polymerases. However, the mechanism by which the newly synthesized product transits in and out of the proofreading exonuclease domain has to be quite different. The discovery of a domain that seems to be an RNA-binding module raises the possibility that Pol II family members interact with RNA.  相似文献   

12.
Proliferating cell nuclear antigen (PCNA) is an essential component of the DNA replication and repair machinery in the domain Eucarya. We cloned the gene encoding a PCNA homolog (PfuPCNA) from an euryarchaeote, Pyrococcus furiosus, expressed it in Escherichia coli, and characterized the biochemical properties of the gene product. The protein PfuPCNA stimulated the in vitro primer extension abilities of polymerase (Pol) I and Pol II, which are the two DNA polymerases identified in this organism to date. An immunological experiment showed that PfuPCNA interacts with both Pol I and Pol II. Pol I is a single polypeptide with a sequence similar to that of family B (alpha-like) DNA polymerases, while Pol II is a heterodimer. PfuPCNA interacted with DP2, the catalytic subunit of the heterodimeric complex. These results strongly support the idea that the PCNA homolog works as a sliding clamp of DNA polymerases in P. furiosus, and the basic mechanism for the processive DNA synthesis is conserved in the domains Bacteria, Eucarya, and Archaea. The stimulatory effect of PfuPCNA on the DNA synthesis was observed by using a circular DNA template without the clamp loader (replication factor C [RFC]) in both Pol I and Pol II reactions in contrast to the case of eukaryotic organisms, which are known to require the RFC to open the ring structure of PCNA prior to loading onto a circular DNA. Because RFC homologs have been found in the archaeal genomes, they may permit more efficient stimulation of DNA synthesis by archaeal DNA polymerases in the presence of PCNA. This is the first stage in elucidating the archaeal DNA replication mechanism.  相似文献   

13.
14.
15.
16.
17.
DNA replication machineries tend to stall when confronted with damaged DNA template sites, causing the biochemical equivalent of a major 'train wreck'. A newly discovered bacterial DNA polymerase, Escherichia coli Pol V, acting in conjunction with the RecA protein, can exchange places with the stalled replicative Pol III core and catalyse 'error-prone' translesion synthesis. In contrast to Pol V-catalysed 'brute-force, sloppier copying', another SOS-induced DNA polymerase, Pol II, plays a pivotal role in an 'error-free', replication-restart DNA repair pathway and probably involves RecA-mediated homologous recombination.  相似文献   

18.
DNA polymerase activity is essential for replication, recombination, repair, and mutagenesis. All DNA polymerases studied so far from any biological source synthesize DNA by the Watson-Crick base-pairing rule, incorporating A, G, C, and T opposite the templates T, C, G, and A, respectively. Non-Watson-Crick base pairs would lead to mutations. In this report, we describe the ninth human DNA polymerase, Pol(iota), encoded by the RAD30B gene. We show that human Pol(iota) violates the Watson-Crick base-pairing rule opposite template T. During base selection, human Pol(iota) preferred T-G base pairing, leading to G incorporation opposite template T. The resulting T-G base pair was less efficiently extended by human Pol(iota) compared to the Watson-Crick base pairs. Consequently, DNA synthesis frequently aborted opposite template T, a property we designated the T stop. This T stop restricted human Pol(iota) to a very short stretch of DNA synthesis. Furthermore, kinetic analyses show that human Pol(iota) copies template C with extraordinarily low fidelity, misincorporating T, A, and C with unprecedented frequencies of 1/9, 1/10, and 1/11, respectively. Human Pol(iota) incorporated one nucleotide opposite a template abasic site more efficiently than opposite a template T, suggesting a role for human Pol(iota) in DNA lesion bypass. The unique features of preferential G incorporation opposite template T and T stop suggest that DNA Pol(iota) may additionally play a specialized function in human biology.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号