首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BackgroundAccumulating evidence from the experimental and computational studies indicated that the functional properties of proteins are different between in vitro and living cells, raising the necessity to examine the protein structure under the native intracellular milieu. To gain structural information of the proteins inside the living cells at an atomic resolution, in-cell NMR method has been developed for the past two decades.Scope of reviewIn this review, we will overview the recent progress in the methodological developments and the biological applications of in-cell NMR, and discuss the advances and challenges in this filed.Major conclusionsA number of methods were developed to enrich the isotope-labeled proteins inside the cells, enabling the in-cell NMR observation of bacterial cells as well as eukaryotic cells. In-cell NMR has been applied to various biological systems, including de novo structure determinations, protein/protein or protein/drug interactions, and monitoring of chemical reactions exerted by the endogenous enzymes. The bioreactor system, in which the cells in the NMR tube are perfused by fresh culture medium, enabled the long-term in-cell NMR measurements, and the real-time observations of intracellular responses upon external stimuli.General significanceIn-cell NMR has become a unique technology for its ability to obtain the function-related structural information of the target proteins under the physiological or pathological cellular environments, which cannot be reconstituted in vitro.  相似文献   

2.
A heteronuclear spin echo experiment is described which allows detection of both 12C and 13C labelled species in a 1H spectrum. Fractional labelling of 13C labelled metabolites can thus be observed. The method is illustrated with a study of the exchange of 13C label between the methyl groups of alanine and pyruvate catalysed by the enzyme alanine aminotransferase (E.C. 2.6.1.2) both in the human erythrocyte and in, vitro.  相似文献   

3.
4.
In this report, (19)F spin incorporation in a specific site of a specific membrane protein in E. coli was accomplished via trifluoromethyl-phenylalanine ((19) F-tfmF). Site-specific (19)F chemical shifts and longitudinal relaxation times of diacylglycerol kinase (DAGK), an E. coli membrane protein, were measured in its native membrane using in situ magic angle spinning (MAS) solid state nuclear magnetic resonance (NMR). Comparing with solution NMR data of the purified DAGK in detergent micelles, the in situ MAS-NMR data illustrated that (19)F chemical shift values of residues at different membrane protein locations were influenced by interactions between membrane proteins and their surrounding lipid or lipid mimic environments, while (19)F side chain longitudinal relaxation values were probably affected by different interactions of DAGK with planar lipid bilayer versus globular detergent micelles.  相似文献   

5.
In situ hybridisation techniques for localisation of specific RNAs in plant tissues are examined. The resolution and sensitivity achieved using several different methods are compared. Use of radiolabelled probes on semi-thin cryosections is considered to be the most sensitive application for in situ hybridisation in plants. Finer resolution can be achieved using thin sections of material embedded in either wax or plastic. Preliminary studies demonstrate that ultrastructural resolution can be achieved by electron microscopic in situ hybridisation using biotin-labelled probes in conjunction with electron opaque markers.  相似文献   

6.
Metabolites of the potent DP antagonist, MK-0524, were generated using in vitro systems including hepatic microsomes and hepatocytes. Four metabolites (two hydroxylated diastereomers, a ketone and an acyl glucuronide) were characterized by LC-MS/MS and 1H NMR. Larger quantities of these metabolites were prepared by either organic synthesis or biosynthetically to be used as standards in other studies. The propensity for covalent binding was assessed and was found to be acceptable (<50 pmol-equiv/mg protein).  相似文献   

7.
Polyaromatic molecules with amino chain substituents, upon binding with DNA, selectively catalyze exchange of the A.T base pair protons with bulk water protons. The amine-catalyzed exchange is mediated by compounds which are A.T and G.C base sequence specific, intercalators, and outside binders. A mechanism for the selective exchange, involving transient opening and closing of individual A.T base pairs in the duplex, is discussed.  相似文献   

8.
Proton spin-lattice relaxation measurements were performed in 10 mM lysozyme solution as a function of temperature and degree of substitution of solvent H2O with D2O. The results show that in the temperature range from 274 to 323 K, the intermolecular lysozyme proton water proton coupling contributes appreciably to the observed water proton relaxation rate. In this system exchange between water protons and labile protein protons does not dominate the behaviour with temperature of the water-lysozyme intermolecular contribution to the spin-lattice relaxation.  相似文献   

9.
P-31 nuclear magnetic resonance (NMR) is uniquely suited to measure the kinetics of the phosphoryl-exchange reaction catalyzed by creatine kinase in intact mammalian tissue, especially striated muscle. Recently developed transgenic mouse models of the creatine kinase iso-enzyme system open novel opportunities to assess the functional importance of the individual iso-enzymes and their relative contribution to the total in situ flux through the CK reaction. This chapter reviews the most recent findings from NMR flux measurements on such genetic models of CK function. Findings in intact mouse skeletal and cardiac muscle in vivo are compared to data from purified mitochondrial and cytosolic creatine kinase in vitro. The relevance of findings in transgenic animals for the function of CK in wild-type tissue is described and the perspectives of transgenic techniques in future quantitative studies on the creatine kinase iso-enzyme system are indicated.  相似文献   

10.
11.
12.
Water proton nuclear magnetic resonance relaxation measurements have been obtained for aqueous suspensions of red cell membranes. These data support a model in which water molecules are exchanging rapidly between a bound phase with restricted motions and a free phase with dynamic properties similar to liquid water. From this model and these data, estimates are obtained for the relaxation time for bound phase water. Possible relaxation mechanisms for bound phase water are discussed and some support is found for an intermolecular interaction modulated by translational motions characterized by a diffusion constant of 10(-9) cm2/s.  相似文献   

13.
Liver cancer is one of the most common cancers worldwide. Altered lipid metabolism in the liver is a key feature of developing liver nodules and tumors. Methods of analysis vary from the most sophisticated chromatography to the in vivo nuclear magnetic resonance (NMR) spectroscopy. In this study, we present a systematic method for the identification and quantitation of signature signals from lipid metabolites using 1D NMR proton spectroscopy. We assessed lipid metabolites in an epigenetic rat hepatocarcinogenesis model induced by treatment with a choline-deficient diet (CDAA, choline-deficient l-amino acid defined) over a period of 1 year, from the formation of steatosis, to the development of nodules and adenomas. A comparable choline-sufficient (CSAA) diet was used for the controls. The resonances of the methylene protons of the glycerol backbone in phospholipids were used to quantify the total concentration of such compounds. CDAA rat livers were found to have significantly higher levels of phospholipids, when compared to CSAA, throughout the entire carcinogenesis period. The tri-methyl protons of choline compounds serves to quantify total choline, and the vinyl and bis-allyl proton resonances can be used to not only quantify fatty acid concentrations but also to probe the number of double bonds in a fatty acid moiety. Early stages of carcinogenesis indicate a lower degree of double bonds in fatty acyl containing compounds in CDAA rat livers, when compared to CSAA. The results of this study are in agreement with those previously published in the literature on other rat hepatocarcinogenesis models.  相似文献   

14.
In situ plant water balance studies using a portable NMR spectrometer   总被引:3,自引:0,他引:3  
A portable 1H NMR spectrometer has been applied to whole plantsin situ, i.e. in climate rooms and in a greenhouse, to studyplant water relations under these conditions. The spectrometerconsists of a 30 kg permanent magnet system of 0.235 T, modifiedBruker Minispec electronics, and a standard XT pc for spectrometercontrol. Unattended, the system automatically measures the xylemsap stream and tissue water content in a well-defined sectionof the plant stem. Because of the small size of the magnet thesemeasurements can be made at different positions on the plantstem or on different plants in succession. Magnetic field driftdue to the varying climates that occur in greenhouses was correctedby field locking. Results are presented for a single plant ina climate room, demonstrating a method for the study of plantwater hydraulics. In addition, a single plant in a greenhousecrop was measured, and the NMR results were compared with thewater uptake and transpiration rates under (natural) variationof light intensity and relative humidity, demonstrating thereliability of the portable NMR under realistic greenhouse conditions.Finally, the application for the measurement of the root wateruptake efficiency is demonstrated for a number of grafted cucumberplants under constant climatic conditions in a phytotron. Key words: Portable NMR system, plant water balance sensor, greenhouse applications, flow, water content  相似文献   

15.
In vivo or in situ nuclear magnetic resonance (NMR) offers a powerful tool to study the degradation of xenobiotics by microorganisms. Most studies reported are based on the use of heteronuclei, and experiments with xenobiotics have been limited because specifically labeled xenobiotics are not commercially available, with the exception of 19F and 31P. 1H NMR is, thus, of great interest in this area. To avoid problems caused by the presence of water and intrinsic metabolite signals, some studies were performed using a deuterated medium or specific detection of protons linked to the 13C–15N enriched pattern. We report here the application of in situ 1H NMR, performed directly on culture media, to study the metabolism of heterocyclic compounds. In this review, we show that a common pathway is involved in the biodegradation of morpholine, piperidine, and thiomorpholine by Mycobacterium aurum MO1 and Mycobacterium sp. RP1. In all cases, the first step is the cleavage of the C–N bond, which results in an amino acid. Thiomorpholine is first oxidized to sulfoxide before the opening of the ring. The second step is the deamination of the intermediate amino acid, which leads to the formation of a diacid. We have shown that the cleavage of the C–N bond and the oxidation of thiomorpholine are initiated by reactions involving a cytochrome P450. Journal of Industrial Microbiology & Biotechnology (2001) 26, 2–8. Received 27 December 1999/ Accepted in revised form 08 May 2000  相似文献   

16.
17.
《Biophysical journal》2022,121(8):1512-1524
Antimicrobial peptides are promising therapeutic agents to mitigate the global rise of antibiotic resistance. They generally act by perturbing the bacterial cell membrane and are thus less likely to induce resistance. Because they are membrane-active molecules, it is critical to verify and understand their potential action toward eukaryotic cells to help design effective and safe drugs. In this work, we studied the interaction of two antimicrobial peptides, aurein 1.2 and caerin 1.1, with red blood cell (RBC) membranes using in situ 31P and 2H solid-state NMR (SS-NMR). We established a protocol to integrate up to 25% of deuterated fatty acids in the membranes of ghosts, which are obtained when hemoglobin is removed from RBCs. Fatty acid incorporation and the integrity of the lipid bilayer were confirmed by SS-NMR and fluorescence confocal microscopy. Leakage assays were performed to assess the lytic power of the antimicrobial peptides. The in situ perturbation of the ghost membranes by aurein 1.2 and caerin 1.1 revealed by 31P and 2H SS-NMR is consistent with membrane perturbation through a carpet mechanism for aurein 1.2, whereas caerin 1.1 acts on RBCs via pore formation. These results are compatible with fluorescence microscopy images of the ghosts. The peptides interact with eukaryotic membranes following similar mechanisms that take place in bacteria, highlighting the importance of hydrophobicity when determining such interactions. Our work bridges model membranes and in vitro studies and provides an analytical toolbox to assess drug toxicity toward eukaryotic cells.  相似文献   

18.
X L Gao  W Burkhart 《Biochemistry》1991,30(31):7730-7739
Neocarzinostatin (NCS) is an antitumor protein from Streptomyces carzinostaticus that is identical in apo-protein sequence with mitomalcin (MMC) from Streptomyces malayensis. We describe the use of apo-NCS as a model system for applying combined two- and three-dimensional (2D and 3D) proton NMR spectroscopy to the structure determination of proteins (Mr greater than 10K) without isotope labeling. Strategies aimed at accurately assigning overlapped 2D cross-peaks by using semiautomated combined 2D and 3D data analysis are developed. Using this approach, we have assigned 99% of the protons, including those of the side chains, and identified about 1270 intra- and interresidue proton-proton interactions (fixed distances are not included) in apo-NCS. Comparing our results with those reported recently on 2D NMR studies of apo-NCS [Adjadj, E., Mispelter, J., Quiniou, E., Dimicoli, J.-L., Favadon, V., & Lhoste, J.-M. (1990) Eur. J. Biochem. 190, 263-271; Remerowski M. L., Glaser, S. J., Sieker, L., Samy, T. S. A., & Drobny, G. P. (1990) Biochemistry 29, 8401-8409] demonstrated advantages of proton 3D NMR spectroscopy in protein spectral assignments. We are able to obtain more complete proton resonance and secondary structural assignments and find several misassignments in the earlier report. Strategies utilized in this work should be useful for developing automation procedures for spectral assignments.  相似文献   

19.
N-Acetylglucosaminyltransferase V (GnT-V) is an enzyme involved in the biosynthesis of asparagine-linked oligosaccharides. It is responsible for the transfer of N-acetylglucosamine (GlcNAc) from the nucleotide sugar donor, uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), to the 6 position of the alpha-1-6 linked Man residue in N-linked oligosaccharide core structures. GnT-V up-regulation has been linked to increased cancer invasiveness and metastasis and, appropriately, targeted for drug development. However, drug design is impeded by the lack of structural information on the protein and the way in which substrates are bound. Even though the catalytic domain of this type II membrane protein can be expressed in mammalian cell culture, obtaining structural information has proved challenging due to the size of the catalytic domain (95 kDa) and its required glycosylation. Here, we present an experimental approach to obtaining information on structural characteristics of the active site of GnT-V through the investigation of the bound conformation and relative placement of its ligands, UDP-GlcNAc and beta-D-GlcpNAc-(1-->2)-alpha-D-Manp-(1-->6)-beta-D-GlcpOOctyl. Nuclear magnetic resonance (NMR) spectroscopy experiments, inducing transferred nuclear Overhauser effect (trNOE) and saturation transfer difference (STD) experiments, were used to characterize the ligand conformation and ligand-protein contact surfaces. In addition, a novel paramagnetic relaxation enhancement experiment using a spin-labeled ligand analogue, 5'-diphospho-4-O-2,2,6,6-tetramethylpiperidine 1-oxyl (UDP-TEMPO), was used to characterize the relative orientation of the two bound ligands. The structural information obtained for the substrates in the active site of GnT-V can be useful in the design of inhibitors for GnT-V.  相似文献   

20.
The NMR resonances from the hydrogen-bonded guanine and thymine imino protons of base pairs in the four separate complexes forming the arms of a stable DNA four-arm junction have been assigned by using sequential nuclear Overhauser effects connecting protons in adjacent pairs. Comparison of the spectra of these individual duplex arms with that of the intact four-stranded junction suggests that base pairing occurs at the site of branching. The presence of new resonances in the spectrum of the junction can be inferred from comparison of the junction spectrum with the simulated spectra of the four individual arms. In addition, upfield shifts of the ring protons in the base pairs at the penultimate positions in the complex are observed, consistent with a change in the structure at the site of branching. These studies represent the first stage of a detailed analysis of the structure and dynamics of a DNA junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号