首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies demonstrated a direct action of interleukin-1 (IL-1) on release of hormones from rat anterior pituitary cells in monolayer culture. To rule out any possibility of a paracrine effect from the elevated hormones in the static monolayer system, and to examine further the dynamics of hormone release elicited by IL-1, studies were conducted with rat anterior pituitary tissue in a computer-controlled automated perifusion system. In experiments performed on the same day as sacrifice, IL-1 stimulated the release of adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH), thyroid stimulating hormone (TSH), growth hormone (GH) and prolactin (PRL) in a dose-related manner. Peak levels were achieved within 6 minutes of exposure to IL-1. However, PRL was not increased over the baseline fluctuations when pituitaries were perifused with IL-1 after 72 hours of incubation. Hormone release did not appear to undergo desensitization after multiple short pulses of IL-1. Heat-denatured IL-1 had no effect on hormone release. The rapid response suggests that IL-1 acts acutely to release preformed hormone stores.  相似文献   

2.
Neuropeptide Y (NPY) has been recently localized in several hypothalamic nuclei in the mammalian brain. In order to investigate the possible role of NPY on neuroendocrine function, we have investigated the effects of the peptide on the release of anterior pituitary hormones in the rat. Both intravenous (300 μg) or intraventricular (2 to 15 μg) injection of NPY produced in gonadectomized male rats a significant and long-lasting decrease of plasma LH levels. A short duration stimulating effect on prolactin plasma levels was also observed after the intravenous but not after the intraventricular injection of NPY. Plasma levels of the other pituitary hormones were not significantly modified after NPY injection. When incubated in vitro with anterior pituitary cells in monolayer culture, NPY produced no significant change in release of pituitary hormones. Thus NPY seems to exert a selective effect on LH release. Since this effect can be observed after both intravenous and intraventricular injection, it might be hypothesized that NPY could affect LHRH release in two areas which lack blood-brain barrier: the organum vasculosum of the lamina terminalis (OVLT) which contains LHRH cell bodies and NPY fibers and the median eminence which contains both LHRH and NPY fibers. The effect on prolactin release needs to be carefully evaluated in different experimental conditions.  相似文献   

3.
4.
Debeljuk L  Lasaga M 《Peptides》2006,27(11):3007-3019
Tachykinins are present in the pituitary gland and in brain areas involved in the control of the secretion of pituitary hormones. Tachykinins have been demonstrated to stimulate prolactin release acting directly on the anterior pituitary gland. These peptides have also been revealed to be able to act at the hypothalamic level, interacting with neurotransmitters and neuropeptides that have the potential to affect prolactin secretion. Tachykinins seem to act by stimulating or inhibiting the release of the factors that affect prolactin secretion. Among them, tachykinins have been demonstrated to stimulate oxytocin and vasopressin release, which in turn results in prolactin release. Tachykinins also potentiated the response to vasoactive intestinal peptide (VIP) and reinforced the action of glutamate, which in turn result in prolactin release. They have also been shown to interact with serotonin, a neurotransmitter involved in the control of prolactin secretion. In addition, tachykinins have been shown to inhibit GABA release, a neurotransmitter with prolactin-release inhibiting effect. This inhibition may result in an increased prolactin secretion by removal of the GABA inhibition. On the other hand, tachykinins have also been shown to stimulate dopamine release by the hypothalamus, an action that results in an inhibition of prolactin release. Dopamine is a well known inhibitor of prolactin secretion. In conclusion, although tachykinins have been shown to have a predominantly stimulatory effect on prolactin secretion, especially at the pituitary level, under some circumstances they may also exert an inhibitory influence on prolactin release, by stimulating dopamine release at the hypothalamic level.  相似文献   

5.
6.
The present experiments were carried out to further elucidate the mechanism by which dopamine mediates the actions of Y-aminobutyric acid on prolactin release from anterior pituitary following its intraventricular injection in overiectomized conscious rats, Y-Aminobutyric acid significantly suppressed the prolactin levels at 0.1 Μmol concentration while at 4 Μmol dose, the level was elevated. The activity of tyrosine hydroxylase was increased significantly in the anterior pituitary at the lower dose while the higher concentration of Y-aminobutyric acid did not bring about any change in the activity both in the hypothalamus and the anterior pituitary. The results presented suggest that intracellular dopamine in the anterior pituitary may directly inhibit prolactin release; the plasma prolactin level is elevated by Y-aminobutyric acid, by way of either inhibiting dopaminergic tone or possible stimulation of a physiological prolactin releasin g hormone.  相似文献   

7.
To determine the role of arginine vasopressin (AVP) in stress-induced release of anterior pituitary hormones, AVP antiserum or normal rabbit serum (NRS) was micro-injected into the 3rd ventricle of freely-moving, ovariectomized (OVX) female rats. A single 3 microliter injection was given, and 24 hours later, the injection was repeated 30 min prior to application of ether stress for 1 min. Although AVP antiserum had no effect on basal plasma ACTH concentrations, the elevation of plasma ACTH induced by ether stress was lowered significantly. Plasma LH tended to increase following ether stress but not significantly so; however, plasma LH following stress was significantly lower in the AVP antiserum-treated group than in the group pre-treated with NRS. Ether stress lowered plasma growth hormone (GH) levels and this lowering was slightly but significantly antagonized by AVP antiserum. Ether stress also elevated plasma prolactin (Prl) levels but these changes were not significantly modified by the antiserum. To evaluate any direct action of AVP on pituitary hormone secretion, the peptide was incubated with dispersed anterior pituitary cells for 2 hours. A dose-related release of ACTH occurred in doses ranging from 10 ng (10 p mole)-10 micrograms/tube, but there was no effect of AVP on release of LH. The release of other anterior pituitary hormones was also not affected except for a significant stimulation of TSH release at a high dose of AVP. The results indicate that AVP is involved in induction of ACTH and LH release during stress. The inhibitory action of the AVP antiserum on ACTH release may be mediated intrahypothalamically by blocking the stimulatory action of AVP on corticotropin-releasing factor (CRF) neurons and/or also in part by direct blockade of the stimulatory action of vasopressin on the pituitary. The effects of vasopressin on LH release are presumably brought about by blockade of a stimulatory action of AVP on the LHRH neuronal terminals.  相似文献   

8.
We have previously reported that various stressors acutely elevate levels of pituitary cyclic AMP in vivo and that this stress response is not seen in animals tested 7 or 30 days post-adrenalectomy. In this report we present data that demonstrate that the loss of the pituitary cyclic AMP stress response following adrenalectomy is not the result of the loss of stress-induced adrenal epinephrine release. These data show that (1) although administration of epinephrine to intact rats does not elevate levels of pituitary cyclic AMP, administration of epinephrine to adrenalectomized animals does not elevate pituitary cyclic AMP levels in vivo; (2) splanchnic denervation prevents stress-induced adrenal epinephrine release but does not abolish stress-induced increases in pituitary cyclic AMP; and (3) the time course of the developing subsensitive pituitary cyclic AMP response to stress following adrenalectomy is much slower (2 to 3 days) than the loss of circulating epinephrine.  相似文献   

9.
The present study was conducted to characterize the in vivo effects of epinephrine administration on levels of pituitary cyclic AMP and plasma hormones. Rats were injected with saline or epinephrine bitartrate (1 mg/kg lP) and sacrificed by decapitation 1, 5, 15, 30 or 60 min post-injection. Levels of pituitary cyclic AMP and plasma ACTH, beta-endorphin, beta-LPH, corticosterone and prolactin were determined by radioimmunoassays. The injection procedure itself was somewhat stressful as demonstrated by increased levels of plasma prolactin and ACTH 5 min following either saline or epinephrine injection. This "stress" response was rapid and short-lasting for the pituitary hormones. The response of the adrenal hormone, corticosterone, to saline injection was slower in onset and longer in duration. Pituitary cyclic AMP levels did not increase following saline injection. Epinephrine-injected animals displayed markedly elevated plasma levels of ACTH, beta-endorphin and beta-LPH at 15, 30 and 60 min as compared to control or saline-injected rats. In addition, levels of pituitary cyclic AMP were increased over 10 fold at these times. Levels of plasma prolactin, a stress-responsive hormone, were not significantly increased in epinephrine-injected animals as compared to saline-injected rats indicating that these later responses seem to be specific to epinephrine rather than to stress.  相似文献   

10.
The effect of muscimol, a specific potent GABAA receptor agonist, on prolactin release from human prolactin-secreting tissue was investigated using a perifusion system. Perifusion studies on normal rat anterior pituitary tissue, which has identical GABA receptors to those found in normal human pituitary glands, show that muscimol has a specific biphasic effect on prolactin release. This is characterized by an initial transient stimulation (222.3 +/- 21.6% of basal) lasting for 5-10 min followed by a more prolonged inhibitory phase (63.9 +/- 3.1% inhibition of basal). Five human prolactin-secreting adenomas were studied, and in none of the tumours could a biphasic response be demonstrated. One of the prolactin-secreting adenomas had a blunted inhibitory response, but the other 4 showed no inhibitory effect of muscimol on prolactin release. Muscimol had no significant effect on basal or thyrotropin-releasing-hormone (TRH)-stimulated prolactin secretion from GH3 rat pituitary tumour cells. These studies suggest that the GABAergic effect on prolactin secretion is absent or altered in both rat and human prolactin-secreting tumour cells.  相似文献   

11.
Authors present a case of 28-year old female with anterior hypopituitarism and diabetes insipidus, with properly functioning anterior pituitary cells as showed by means of measuring pituitary hormones in response to neurohormones i.v. injections. Magnetic resonance imaging revealed neoplastic tissue in the pituitary stalk destroying supraopticohypophysial and paraventriculohypophysial tracts, as well as portal blood system, thus preventing release of vasopressin and these hypothalamic neurohormones from accessing anterior pituitary.  相似文献   

12.
When blinded, golden Syrian hamsters undergo marked gonadal atrophy. This phenomenon is prevented by pinealectomy. The mechanisms involved in this pineal-mediated response were investigated through either the transplantation of pituitary homografts or treatment of blinded, male hamsters with exogenous prolactin. It was found that anterior pituitary homografts placed beneath the kidney capsule on the day of bilateral optic enucleation partially maintained testicular and accessory organ weights. Serum prolactin levels were reduced in blinded animals below that of intact controls. On the other hand, blinded hamsters bearing anterior pituitary homografts showed serum prolactin levels comparable to those of intact controls. In other experiments, the injection of either 3.2 or 6.4 I.U. of ovine prolactin/hamster/ day for a period up to seven weeks partially inhibited the atrophy of testes and accessory organ weights in blinded hamsters. These data suggest a possible role for prolactin in the pineal-mediated atrophic response to light deprivation.  相似文献   

13.
The response of 5 anterior pituitary hormones to single injections of naloxone, morphine and metenkephalin administration was measured in male rats. Morphine and met-enkephalin significantly increased serum prolactin and GH concentrations, and significantly decreased serum LH and TSH concentrations. Naloxone reduced serum prolactin and GH concentrations, increased serum LH and FSH, but had little effect on serum TSH concentrations. Concurrent injections of naloxone with morphine or met-enkephalin reduced the response to each of the drugs given separtely. These results suggest that endogenous morphinomimetic substances may participate in regulating secretion of anterior pituitary hormones.  相似文献   

14.
All of the classically-described hypothalamic, hypophysiotropic factors that regulate anterior pituitary hormone secretion have now been isolated and identified except for prolactin releasing factor. We report here that the 39-amino acid glycopeptide comprising the carboxyterminus of the neurohypophysial vasopressin-neurophysin precursor stimulates prolactin release from cultured pituitary cells as potently as does thyrotropin releasing hormone but has no effect on the secretion of other pituitary hormones. Furthermore, antisera to the glycopeptide administered to lactating rats attenuated suckling-induced prolactin secretion. Thus, this glycopeptide appears to be the neurohypophysial prolactin releasing factor.  相似文献   

15.
Angiotensin II stimulates prolactin release both in vivo in the rat and in vitro in anterior pituitary cell cultures. Moreover, angiotensin II binding sites have been identified in pituitary lactotrophs and it has been shown that angiotensin converting enzyme (ACE) is present in rat anterior pituitary. We studied the effect of enalapril, a potent converting enzyme inhibitor, on baseline prolactin levels in nine hypertensive postmenopausal women. The results indicate that 15-day inhibition of ACE by enalapril reduced prolactinaemia, suggesting that angiotensin II plays a role in the control of prolactin secretion in hypertensives.  相似文献   

16.
We compared the circadian rhythms of anterior pituitary hormones in 15 patients with noncompensated insulin-dependent diabetes on first and second day treatment with Biostator. The rhythm was evaluated by means of a least squares analysis and presented as the circle of cosinors. In noncompensated diabetes the TSH and prolactin rhythm was maintained, whereas other hormones of the anterior pituitary showed no significant rhythm. In the course of one-day normalization of glycemia by means of Biostator the TSH and prolactin rhythm was maintained, whereas the circadian rhythm of growth hormone and ACTH levels appeared with acrophase at 18.47 and 19.59 hour, respectively. The LH rhythm did not exist, whereas the FSH rhythm was dubious. One may assume that noncompensated diabetes results in the impairment of certain pituitary hormonal rhythms and these disturbances are reversible after restoring of normoglycemia.  相似文献   

17.
18.
It is a confirmed fact that in females both the humoral and cell mediated immune response is more active than in males. A large amount of information supports the view that hormones of the endocrine system are intimately involved in this immunological dimorphism. Such hormones include the gonadal steroids, the adrenal glucocorticoids, growth hormone (GH) and prolactin (Prl) from the pituitary, thymic hormones, and substances generated by activated lymphocytes. It is suggested that a complex medley of these hormonal interactions effect both developing lymphocytes within the microenvironment and regulate adult effector cells. The most important of these hormonal interactions leading to immunological dimorphism are the effects elicited by estrogen (E) elaborated at elevated levels from the female ovary after puberty. Elevated E leads to basal GH secretion, increased Prl, and increased thymosin release, all of which are hypothesized to effect lymphocyte development and stimulate adult T- and B-cell function in females. Interactions of hormonal regulatory axes involving the hypothalamus, pituitary, gonads, adrenals, and thymus are also thought to be involved. Factors elaborated by activated immune cells including IL-1 and IL-2 may also play a role in down regulation of these responses. Finally, genetic components are also considered pertinent especially under conditions of pathological disequilibrium leading to autoimmune disease. While the benefits provided by immunological dimorphism are still not entirely clarified, since sex hormones are intimately involved in immunological regulation it is quite possible that the increased immune response in females allows them to compensate for the increased physiological stress which accompanies reproduction. The final outcome would thus be the assurance of reproductive success of the species.  相似文献   

19.
Abstract

Substance P and the two other mammalian tachykinins, neurokinin A and B, are accepted to have direct regulating effects at the anterior pituitary level. We have examined the effects of substance P (SP) and neurokinin B (NKB), alone and in combination, on prolactin release from cultured anterior pituitary cells grown on collagen-coated micro beads and placed in a perfusion system. Prolactin (Prl) secretion was observed within 25 s after exposure to either secretagogue and reached a maximum within 60-80 s. Furthermore, the prolactin response induced by SP and NKB was dose-dependent. Prl secretion remained constant for up to 4 h when SP or NKB were perifused and then fell gradually towards basal levels. Simultaneous addition of submaximal concentrations of SP and NKB resulted in an additive response compared with the responses of either secretagogue alone. Continuous (8 h) perifusion with SP did not prevent a normal prolactin response by NKB or TRH. These results indicate that the tachykinins, substance P and neurokinin B, release Prl from perifused female rat anterior pituitary cells by interaction with two different receptors, possibly the NK1 and NK3 tachykinin receptor subtypes.  相似文献   

20.
Electroconvulsive therapy (ECT) is known to stimulate subcortical brain regions and release hormones from the anterior and the posterior pituitary. To enhance the subcortical effect of ECT and the neuroendocrinological response we used high dose right unilateral ECT (RUL-ECT) in 11 depressive patients and studied its effect on the release of vasopressin, prolactin and neuropeptide FF. The RUL ECT stimulus for all studied patients was 5 times the individual seizure threshold and it led to immediate release of vasopressin in all studied patients. The release of prolactin was less uniform however in accordance with results from earlier studies. The ECT also stimulated a NPFF secretion peak that came approximately 5 min after ECT stimulus and preceded the prolactin peak. The maximal elevations in circulating vasopressin and prolactin concentrations were 680% and 950%, respectively. The neuropeptide FF concentration increased by 100% after ECT. There was a second rise in NPFF concentration at 25 min after the ECT treatment. The increases in all peptide concentrations were significant, but were not correlated with each other. The neuropeptide FF concentration returned to baseline level at 10 min and the vasopressin concentration at 25 min after ECT. The prolactin concentration remained increased during the 30 min follow up period. Our results complete earlier finding on ECT stimulated vasopressin and prolactin release and show that high intensity RUL-ECT releases neuropeptide FF into human blood. The modest rise of circulating NFFF most likely represents leakage from the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号