首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Kudo T  Sutou S 《Gene》1999,231(1-2):33-40
SF-1/Ad4BP was identified as a master regulator controlling steroidogenic P-450 genes and belongs to the steroid hormone receptor superfamily. It is expressed in the adrenal cortex, gonads, and pituitary gonadotroph. Targeted disruption of the mouse SF-1/Ad4BP gene showed that it plays a critical role in the development of the steroidogenic tissues and pituitary gonadotroph. We have recently cloned the chicken SF-1/Ad4BP cDNA and have now cloned the chicken SF-1/Ad4BP gene and analyzed its promoter activity. This gene consists of seven exons as well as mammalian counterparts and spans about 15 kb. In mice, the gene encodes another protein, ELP, but we could not find the open reading frame of ELP in the chicken SF-1/Ad4BP gene. The promoter of this gene included five putative cis elements (E, CCAAT, GC and TATA boxes and a GA-rich element), although no TATA box has been found in mammalian counterparts. The E and CCAAT boxes moderately affected promoter activity and the GA-rich element and TATA box were essential for the expression of the chicken SF-1/Ad4BP gene.  相似文献   

5.
6.
7.
The nuclear receptor Ad4BP/SF-1 is essential for development of the adrenal cortex and the gonads, which derive from a common adrenogonadal primordium. The adrenal cortex subsequently forms morphologically distinct compartments: the inner (fetal) and outer (definitive or adult) zones. Despite considerable effort, the mechanisms that mediate the differential development of the adrenal and gonadal primordia and the fetal and adult adrenal cortices remain incompletely understood. We previously identified a fetal adrenal-specific enhancer (FAdE) in the Ad4BP/SF-1 locus that directs transgene expression to the fetal adrenal cortex and demonstrated that this enhancer is autoregulated by Ad4BP/SF-1. We now combine the FAdE with the Cre/loxP system to trace cell lineages in which the FAdE was active at some stage in development. These lineage-tracing studies establish definitively that the adult cortex derives from precursor cells in the fetal cortex in which the FAdE was activated before the organization into two distinct zones. The potential of these fetal adrenocortical cells to enter the pathway that eventuates in cells of the adult cortex disappeared by embryonic day 14.5. Thus, these studies demonstrate a direct link between the fetal and adult cortices involving a transition that must occur before a specific stage of development.  相似文献   

8.
9.
10.
11.
12.
13.
Ad4BP/SF-1 (NR5A1) was identified as a key regulator of the hypothalamus-pituitary-gonadal and -adrenal axes. Loss-of-function studies revealed that Ad4BP/SF-1 is essential for the development of these tissues and spleen. Here, we generated transgenic mouse with BAC recombinants carrying a dual promoter and Tet-off system. These recombinants have a potential to express lacZ and Ad4BP/SF-1 in the tissues where endogenous Ad4BP/SF-1 is expressed. However, protein level of Ad4BP/SF-1 varied among the tissues of the transgenic mice and probably thereby the target tissues are affected differentially. The BAC-transgenic mice were applied to rescue Ad4BP/SF-1 KO mouse. Interestingly, the mice successfully rescued the gonad and spleen but failed to rescue the adrenal gland. This variation might be dependent on in part the protein expression levels among the tissues and in part on differential sensitivities to the gene dosage.  相似文献   

14.
15.
Chromatin insulators are boundary elements between distinctly regulated, neighboring chromosomal domains, and they function by blocking the effects of nearby enhancers in a position-dependent manner. Here, we show that the SNF2-like chromodomain helicase protein CHD8 interacts with the insulator binding protein CTCF. Chromatin immunoprecipitation analysis revealed that CHD8 was present at known CTCF target sites, such as the differentially methylated region (DMR) of H19, the locus control region of beta-globin, and the promoter region of BRCA1 and c-myc genes. RNA interference-mediated knockdown of CHD8 significantly abolished the H19 DMR insulator activity that depends highly on CTCF, leading to reactivation of imprinted IGF2 from chromosome of maternal origin. Further, the lack of CHD8 affected CpG methylation and histone acetylation around the CTCF binding sites, adjacent to heterochromatin, of BRCA1 and c-myc genes. These findings provide insight into the role of CTCF-CHD8 complex in insulation and epigenetic regulation at active insulator sites.  相似文献   

16.
17.
The differentially methylated imprinting control region (ICR) region upstream of the H19 gene regulates allelic Igf2 expression by means of a methylation-sensitive chromatin insulator function. We have previously shown that maternal inheritance of mutated (three of the four) target sites for the 11-zinc finger protein CTCF leads to loss of Igf2 imprinting. Here we show that a mutation in only CTCF site 4 also leads to robust activation of the maternal Igf2 allele despite a noticeably weaker interaction in vitro of site 4 DNA with CTCF compared to other ICR sites, sites 1 and 3. Moreover, maternally inherited sites 1 to 3 become de novo methylated in complex patterns in subpopulations of liver and heart cells with a mutated site 4, suggesting that the methylation privilege status of the maternal H19 ICR allele requires an interdependence between all four CTCF sites. In support of this conclusion, we show that CTCF molecules bind to each other both in vivo and in vitro, and we demonstrate strong interaction between two CTCF-DNA complexes, preassembled in vitro with sites 3 and 4. We propose that the CTCF sites may cooperate to jointly maintain both methylation-free status and insulator properties of the maternal H19 ICR allele. Considering many other CTCF targets, we propose that site-specific interactions between various DNA-bound CTCF molecules may provide general focal points in the organization of looped chromatin domains involved in gene regulation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号