首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simulation shows that the four-state mobile carrier model for sugar transport in which the asymmetry arises from unequal rate constants of inward and outward translation of the free-carrier and carrier-sugar complex, does not fit with the observed data for pre-steady-state uptake recently obtained by A.G. Lowe and A.R. Walmsley [1987) Biochim. Biophys. Acta 903, 547-550). The main reason for this discrepancy is that pre-steady-state fluxes are determined mainly by the dissociation constants Ks of glucose and maltose for the external sites, rather than the Km (zero-transoi) of glucose and the Ki of maltose. The data are also inconsistent with other forms of asymmetric carrier but are fairly consistent with a symmetrical carrier with high-affinity sites for D-glucose or with a fixed site carrier model.  相似文献   

2.
Summary Time courses of phlorizin binding to the outside of membrane vesicles from porcine renal outer cortex and outer medulla were measured and the obtained families of binding curves were fitted to different binding models. To fit the experimental data a model with two binding sites was required. Optimal fits were obtained if a ratio of low and high affinity phlorizin binding sites of 1:1 was assumed. Na+ increased the affinity of both binding sites. By an inside-negative membrane potential the affinity of the high affinity binding site (measured in the presence of 3 mM Na+) and of the low affinity binding site (measured in the presence of 3 or 90 mM Na+) was increased. Optimal fits were obtained when the rate constants of dissociation were not changed by the membrane potential. In the presence of 90 mM Na+ on both membrane sides and with a clamped membrane potential,K D values of 0.4 and 7.9 M were calculated for the low and high affinity phlorizin binding sites which were observed in outer cortex and in outer medulla. Apparent low and high affinity transport sites were detected by measuring the substrate dependence ofd-glucose uptake in membrane vesicles from outer cortex and outer medulla which is stimulated by an initial gradient of 90 mM Na+(out>in). Low and high affinity transport could be fitted with identicalK m values in outer cortex and outer medulla. An inside-negative membrane potential decreased the apparentK m ofhigh affinity transport whereas the apparentK m of low affinity transport was not changed. The data show that in outer cortex and outer medulla of pighigh and low affinity Na+-d-glucose cotransporters are present which containlow and high affinity phlorizin binding sites, respectively. It has to be elucidated from future experiments whether equal amounts of low and high affinity transporters are expressed in both kidney regions or whether the low and high affinity transporter are parts of the same glucose transport moleculc.  相似文献   

3.
Summary o-Phthalate is actively transported into L1210 cells and the primary route for cell entry is the same transport system which mediates the influx of methotrexate and other folate compounds. The identity of the influx route has been established by the following observations: (A) Phthalate influx is competitively inhibited by methotrexate and the inhibition constant (K i ) is comparable to theK i for half-maximal influx of methotrexate; (B) Various anions inhibit the influx of phthalate and methotrexate with comparableK i values; (C) The influx of phthalate and methotrexate both fluctuate in parallel with changes in the anionic composition of the external medium; and (D) A specific covalent inhibitor of the methotrexate transport system (NHS-methotrexate) also blocks the transport of phthalate. In contrast, the efflux of phthalate does not occur via the methotrexate influx carrier, but rather by two separate processes which can be distinguished by their sensitivities to bromosulfophthalein. Efflux via the bromosulfophthalein-sensitive route constitutes 75% of total efflux and is enhanced by glucose and inhibited by oligomycin. The inability of phthalate to exit via the methotrexate influx carrier is due to competing intracellular anions which prevent phthalate from interacting with the methotrexate binding site at the inner membrane surface.  相似文献   

4.
Calf-thymocyte membrane vesicles, prepared by hypotonic lysis and homogenization, were isolated by standard centrifugal techniques designed for enrichment of plasma membrane. At 20°C, these vesicles equilibrated with d-glucose and 3-O-methyl-d-glucose more rapidly than with l-glucose. About 25% of the equilibrium d-sugar space (6 μl/mg protein) was very slowly penetrated by l-glucose ( ). The time course of d-sugar accumulation in excess of l-glucose accumulation indicated that this space equilibrated with d-glucose and 3-O-methyl-d-glucose with half-times of approximately 0.2–0.4 min. The remainder of the equilibrium d-sugar space (about 75%) appeared equally accessible to both glucose isomers ( to 5 min). This was confirmed in studies of efflux from preloaded vesicles, where the d-glucose space fell with a short half-time (0.2 min) to the l-glucose space, after which the two isomers exited with the same half-time. Addition of sucrose to increase osmolarity reduced both spaces (specific and non-specific) in a manner which indicated that little if any of the vesicle sugar was bound. This was confirmed by the fact that equilibrium glucose space was independent of glucose concentration and by the fact that vesicles immediately lost their sugar when diluted with water at 0°C. These data indicate the presence of two vesicle types, discriminant and indiscriminant as regards transport of the glucose isomers. Entry of d-glucose into the discriminant (stereospecific) vesicles was temperature sensitive (Q10 > 2), saturable (Km 2 mM), and was inhibited by phloretin (Ki < 200 μM), N-ethylmaleimide (Ki < 10 mM) and cytochalasin B (Ki < 2 μM), suggesting that these vesicles contain the plasma-membrane glucose carrier. Entry of l- and d-glucose into the indiscriminant vesicles showed none of these properties. The equilibrium-exchange Km and V were about five times the entry Km and V, indicating the substrate loading greatly facilitates carrier translocation, at least in the outward direction.  相似文献   

5.
Glucose dehydrogenase (E.C. 1.1.1.47) from B. megaterium M 1286 was immobilized together with mutarotase (E.C. 5.1.3.3) on several organic carriers and by different methods. The storage stability of the enzyme at pH-values > 6 is slightly improved by immobilization and the pH-optimum is shifted from 8.3 to 8.0. Kinetic constants of the immobilized enzyme are: KM(NAD+) = 5.36 × 10?4 mol/l KM(glucose) = 3.76 · 10?2 mol/l and Vmax = 5.54 · 10?5 mol/(l min g carrier) for the most active preparation (2.16 mg enzyme/g carrier). In reactor experiments the immobilized glucose dehydrogenase was used with glucose to regenerate NADPH in NADPH-dependent iron-III-protoporphyrin-IX-imidazole catalyzed hydroxylation and demethylation of model substrates of cytochrome P-450. The advantages of the coupling of both reactions with cofactor recycling are shown and discussed.  相似文献   

6.
Summary The kinetics of K+ and Na+ transport across the membrane of large unilamellar vesicles (L.U.V.) were compared at two pH's, with two carriers: (222)C 10-cryptand (diaza-1, 10-decyl-5-hexaoxa-4,7,13,16,21,24-bicyclo[8.8.8.]hexacosane) and valinomcyin, i.e. an ionizable macrobicyclic amino polyether and a neutral macrocyclic antibiotic. The rate of cation transport by (222)C10 saturated as cation and carrier concentrations rose. The apparent affinity of (222)C10 for K+ was higher and less pH dependent than that for Na+ but resembled the affinity of valinomycin for K+. The efficiency of (222)C10 transport of K+ decreased as the pH fell and the carrier concentration rose, and was about ten times lower than that of valinomycin. Noncompetitive K+/Na+ transport selectivity of (222)C10 decreased as pH, and cation and carrier concentrations rose, and was lower than that of valinomycin. Transport of alkali cations by (222)C10 and valinomycin was noncooperative. Reaction orders in cationn(S) and carrierm(M) varied with the type of cation and carrier and were almost independent of pH;n(S) andm(M) were not respectively dependent on carrier or cation concentrations. The apparent estimated constants for cation translocation by (222)C10 were higher in the presence of Na+ than of K+ due to higher carrier saturation by K+, and decreased as pH and carrier concentration increased. Equilibrium potential was independent of the nature of carrier and transported cation. Results are discussed in terms of the structural, physicochemical and electrical characteristics of carriers and complexes.  相似文献   

7.
Analysis of the mechanistic basis by which sodium-coupled transport systems respond to changes in membrane potential is inherently complex. Algebraic expressions for the primary kinetic parameters (K m and V max ) consist of multiple terms that encompass most rate constants in the transport cycle. Even for a relatively simple cotransport system such as the Na+/alanine cotransporter in LLC-PK1 cells (1:1 Na+ to substrate coupling, and an ordered binding sequence), the algebraic expressions for K m for either substrate includes ten of the twelve rate constants necessary for modeling the full transport cycle. We show here that the expression of K m of the first-bound substrate (Na+) simplifies markedly if the second-bound substrate (alanine) is held at a low concentration so that its' binding becomes the rate limiting step. Under these conditions, the expression for the K Na m includes rate constants for only two steps in the full cycle: (i) binding/dissociation of Na+, and (ii) conformational `translocation' of the substrate-free protein. The influence of imposed changes in membrane potential on the apparent K Na m for the LLC-PK1 alanine cotransporter at low alanine thus provides insight to potential dependence at these sites. The data show no potential dependence for K Na m at 5 μm alanine, despite marked potential dependence at 2 mm alanine when the full algebraic expression applies. The results suggest that neither translocation of the substrate-free form of the transporter nor binding/dissociation of extracellular sodium are potential dependent events for this transport system. Received: 10 April 1998/Revised: 6 July 1998  相似文献   

8.
Summary Maltotriose transport was studied in two brewer's yeast strains, an ale strain 3001 and a lager strain 3021, using laboratory-synthesized14C-maltotriose. The maltotriose transport systems preferred a lower pH (pH 4.3) to a higher pH (pH 6.6). Two maltotriose transport affinity systems have been indentified. The high affinity system hasK m values of 1.3 mM for strain 3021 and 1.4 mM for strain 3001. The low affinity competitively inhibited by maltose and glucose withK i values of 58 mM and 177 mM. respectively, for strain 3021, and 55 mM and 147 mM, respectively, for strain 3001. Cells grown in maltotriose and maltose had higher maltotriose and maltose transport rates, and cells grown in glucose had lower maltortriose and maltose transport rates. Early-logarithmic phase cells transported glucose faster than either maltose or maltotriose. Cells harvested later in the growth phase had increased maltotriose and maltose transport activity. Neither strain exhibited significant differences with respect to maltose and maltotriose transport activity.  相似文献   

9.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   

10.
Abstract: The kinetics of transport across the blood-brain barrier and metabolism in brain (hemisphere) of [14C]2-fluoro-2-deoxy-d -glucose (FDG) were compared to that of [3H]2-deoxy-d -glucose (DG) and d -glucose in the pentobarbital-anesthetized adult rat. Saturation kinetics of transport were measured with the brain uptake index (BUI) method. The BUI for FDG was 54.3 ± 5.6. Nonlinear regression analysis gave a Km of 6.9 ± 1.1 mM and a Vmax of 1.70 ± 0.32 μmol/min/g. The K1 for glucose inhibition of FDG transport was 10.7 ± 4.4 mM. The kinetic constants of influx (k1) and efflux (K2) for FDG were calculated from the Km, Vmax, and glucose concentrations of the hemisphere and plasma (2.3 ± 0.2 μmol/g and 9.9 ± 0.4 mM, respectively). The transport coefficient (k1 FDG/k1glucose) was 1.67 ± 0.07 and the phosphorylation constant was 0.55 ± 0.16. The predicted lumped constant for FDG was 0.89, whereas the measured hexose utilization index for FDG was 0.85 ± 0.16. Conclusion: The value for the lumped constant can be predicted on the basis of the known kinetic constants of FDG and glucose transport and metabolism, as well as brain and plasma glucose levels. Knowledge of the lumped constant is crucial in interpreting data obtained from 18FDG analysis of regional glucose utilization in human brain in pathological states. We propose that the lumped constant will rise to a maximum equal to the transport coefficient for FDG under conditions of transport limitation (hypoglycemia) or elevated glycolysis (ischemia, seizures), and will fall to a minimum equal to the phosphorylation coefficient during phosphorylation limitation (extreme hyperglycemia).  相似文献   

11.
1. When d-glucose exchange influx is measure over a wide range of concentrations then two affinity constants (2.27 and 26.0 mM) are evident. This is consistent with a transport model (the allosteric pore model) in which there is negative cooperativity between subunits of the transport protein. 2. The equations for the allosteric pore model interacting with two substrates (or a substrate and an inhibitor) have been derived and have been used to analyse data from exchange inhibition and for mixed infinite-trans uptake experiments. 3. The exchange inhibition of tracer 3-O-methyl-d-glucose, d-xylose and d-fructose uptake by d-glucose also shows evidence for negative cooperativity and for two inhibition constants which are approximately equal to the d-glucose equilibrium exchange affinity constants. 4. The uptake of d-glucose into infinite-transd-glucose or 3-O-methyl-d-glucose gives Km values of 2.6 and 2.33 mM, respectively. The uptake of 3-O-methyl-d-glucose into infinite-transd-glucose or 3-O-methyl-d-glucose gives Km values of 6.0 and 4.6 mM, respectively. V values are slightly higher when the internal sugar is 3-O-methyl-d-glucose. 5. In cells that are treated with fluorodinitrobenzene the apparent Ki value for d-glucose inhibition of tracer d-fructose uptake is lowered. It is proposed that this is due to a partially selective effect of FDNB on the internal subunit interface stability constant (the internal pore gate).  相似文献   

12.
A thermostable trehalose synthase (TreS) gene from Meiothermus ruber CBS-01 was cloned and overexpressed in Escherichia coli. The purified recombinant TreS could utilize maltose to produce trehalose, and showed an optimum pH and temperature of 6.5 and 50°C, respectively. Kinetic analysis showed that the enzyme had a twofold higher catalytic efficiency (k cat/K m) for maltose than for trehalose, indicating maltose as the preferred substrate. The TreS also had a weak hydrolytic property with glucose as the byproduct, and glucose was a strong competitive inhibitor of the enzyme. The maximum production of trehalose by the enzyme reached 65% at 20°C. The most importantly the enzyme could maintain very high activity (above 90%) at pH 4.0–8.0 and 60°C 5 h. These results provided that the stable TreS was suitable for the industrial production of trehalose from maltose in a one-step reaction.  相似文献   

13.
The objectives of this study were to examine the effects of growth substrate and extracellular pH on phosphoenolpyruvate-dependent glucose phosphorylation as well as to examine how maltose is phosphorylated by the ruminal bacterium Megasphaera elsdenii B159. Phosphoenolpyruvate-dependent glucose phosphorylation by toluene-treated cells was constitutive, and glucose phosphorylation was reduced by 69% at pH 5.0. When toluene-treated cells were incubated in histidine buffer, little maltose phosphorylation occurred in the absence of inorganic phosphate. However, the addition of increasing concentrations of either potassium or sodium phosphate increased maltose phosphorylation. Maximal phosphorylation activity was observed at between 25 and 50 mM of either inorganic phosphate source. Compared with the control incubations, maltose phosphorylation was increased over threefold with 25 mM of either potassium or sodium phosphate. Phosphoglucomutase activity was detected in cell extracts of M. elsdenii B159, and this enzyme had a K m of 3.2 mM for glucose-1-P and a V max of 1836 nmol of NADP+ reduced/mg of protein per min. Maltose was also hydrolyzed by an inducible maltase (K m , 1.19 mM). To our knowledge, this is the first report of a maltose phosphorylase and a maltase in M. elsdenii. Received: 3 November 1999 / Accepted: 5 January 2000  相似文献   

14.
Summary The effects of methylation on the rate constants of carrier-mediated ion transport have been studied on monooleindecane bilayers with K+, Rb+, NH 4 + , and TI+ ions, using the series of homologue carriers, nonactin, monactin, dinactin, trinactin, and tetranactin, each member of the series differing from the previous one by only one methyl group. Measurements of the amplitude and time constant of the current relaxation after a voltage jump over a large domain of voltage and permeant ion concentration, together with a computer curve-fitting procedure, have allowed us, without the help of steady-state current-voltage data, to deduce and compare the values of the various rate constants for ion transport: formation (k Ri) and dissociation (k Di) of the ion-carrier complex at the interface, translocation across the membrane interior of the carrier (k s) and the complex (k is). With the additional information from steady-state low-voltage conductance measurements, we have obtained the value of the aqueous phase-membrane and torus-membrane partition coefficient of the carrier ({ie191-1} and {ie191-2}). From nonactin to tetranactin with the NH 4 + ion,k is, and {ie191-3} are found to increase by factors of 5 and 3, respectively,k Di and {ie191-4} to decrease respectively by factors 8 and 2, whilek Ri andk s are practically invariant. Nearly identical results are found for K+, Rb+, and Tl+ ions.k Ri,k s andk is are quite invariant from one ion to the other except for Tl+ wherek Ri is about five times larger. On the other hand,k Di depends strongly on the ion, indicating that dissociation is the determining step of the ionic selectivity of a given carrier. The systematic variations in the values of the rate constants with increasing methylation are interpreted in terms of modifications of energy barriers induced by the carrier increasing size. Within this framework, we have been able to establish and verify a fundamental relationship between the variations ofk is andk Di with methylation.  相似文献   

15.
Georg Kaiser  Ulrich Heber 《Planta》1984,161(6):562-568
Sucrose transport has been investigated in vacuoles isolated from barley mesophyll protoplasts. Rates of sucrose transfer across the tonoplast were even higher in vitro than in vivo indicating that the sucrose transport system had not suffered damage during isolation of the vacuoles. Sucrose transport is carrier-mediated as shown by substrate saturation of transport and sensitivity to a metabolic inhibitor and to competitive substrates. A number of sugars, in particular maltose and raffinose, decreased uptake of sucrose. Sorbitol was slowly taken up but had no effect on sucrose transport. The SH-reagent p-chloromercuribenzene sulfonate inhibited sucrose uptake completely. The apparent Km of the carrier for sucrose uptake was 21 mM. Transport was neither influenced by ATP and pyrophosphate, with or without Mg2+ present, nor by protonophores and valinomycin (with K+ present). Apparently uptake was not energy dependent. Efflux experiments with preloaded vacuoles indicated that sucrose unloading from the isolated vavuoles is mediated by the same carrier which catalyses uptake. The vacuole of mesophyll cells appears to represent an intermediary storage compartment. Uptake of photosynthetic products into the vacuole during the light apparently minimizes osmotic swelling of the small cytosolic compartment of vacuolated leaf cells when photosynthetic productivity exceeds the capacity of the phloem for translocation of sugars.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazincethane-sulfonic acid - pCMBS p-chloromercuribenzene sulfonate Dedicated to Professor Dr. W. Simonis on the occasion of his 75th birthday  相似文献   

16.
In order to identify amino acid residues in the Escherichia coli raffinose-H+ permease (RafB) that play a role in sugar selection and transport, we first incubated E. coli HS4006 containing plasmid pRU600 (expresses inducible raffinose permease and α-galactosidase) on maltose MacConkey indicator plates overnight. Initially, all colonies were white, indicating no fermentation of maltose. Upon further incubation, 100 mutants appeared red. pRU600 DNA was prepared from 55 mutants. Five mutants transferred the phenotype for fermentation of maltose (red). Plasmid DNA from five maltose-positive phenotype transformants was prepared and sequenced, revealing three distinct types of mutations. Two mutants exhibited Val-35→Ala (MT1); one mutant had Ile-391→Ser (MT2); and two mutants had Ser-138→Asp, Ser-139→Leu and Gly-389→Ala (MT3). Transport studies of [3H]-maltose showed that cells harboring MT1, MT2 and MT3 had greater uptake (P ≤ 0.05) than cells harboring wild-type RafB. However, [14C]-raffinose uptake was reduced in all mutant cells (P ≤ 0.05) with MT1, MT2 and MT3 mutants compared to cells harboring wild-type RafB. Kinetic analysis showed enhanced apparent K m values for maltose and reduced V max/ K m ratios for raffinose compared to wild-type values. The apparent K i value of maltose for RafB indicates a competitive relationship between maltose and raffinose. Maltose “uphill” accumulation was greater for mutants (P ≤ 0.05) than for cells with wild-type RafB. Thus, we implicate residues in RafB that are responsible for raffinose transport and suggest that the substituted residues in RafB dictate structures that enhance transport of maltose.  相似文献   

17.
Glycine enhanced the sensitivity of maize phosphenolpyruvate carboxylase to the activator glucose 6-phosphate and reduced the sensitivity of the enzyme to the inhibitors malate and aspartate. The effects of glycine on the kinetic constants for these other effectors were greater than its effect on the Km for substrate, raising the Ki(malate) 11-fold and reducing Ka(glucose6-P) 7-fold, while reducing the Km(PEP) by 3-fold. Kinetically saturating levels of glycine and glucose 6-phosphate acted synergistically to raise Ki(malate) higher than that observed with either activator alone. Glycine and glucose 6-phosphate also synergistically reduced aspartate inhibition. Dual inhibitor analysis indicated that aspartate and malate bind in a mutually exclusive manner, and thus probably compete for the same inhibitor site. In contrast, the synergism between glycine and glucose 6-phosphate indicate that these activators bind at separate sites. Glycine also reduced the Km(Mg) by 3-fold but had no significant effect on the Km of bicarbonate.Abbreviation PEP phosphoenolpyruvate  相似文献   

18.
—The kinetics of sodium dependent glutamic acid transport have been studied in desheathed frog sciatic nerve. Initial velocities have been measured as a function of both glulamic acid and sodium concentration. Lineweaver–Burk plots are constructed from these data, and the kinetic constants describing uptake are estimated. Vmax is unaffected by sodium concentration, which implies that translocation is not directly affected by sodium. K1 is sodium dependent, which implies that sodium affects the affinity of the carrier for glutamic acid. Reciprocal plots of velocity vs [Na] or K1 vs 1/[Na] are linear, suggesting that glutamic acid and sodium are co-transported on a one-to-one basis. t, the sodium concentration giving half maximal velocity of uptake, was found to vary from about 57 mm to 48 mm at glutamic acid concentrations of 1.0–10.0 ± 10?6m . A model of a mechanism by which sodium and glutamate could be co-transported is presented; the model is in very good agreement with the experimental data.  相似文献   

19.
By using d-glucose, d-xylose, d-galactose and d-fructose in the strictly aerobic yeast Rhodotorula glutinis and by comparing the half-saturation constants with inhibition constants the yeast was shown to possess a single common system for d-xylose and d-galactose (K m's and K i's all between 0.5 and 1.1 mM) but another distinct transport system for d-fructose. The transport of d-glucose has a special position in that glucose blocks apparently allotopically all the other systems observed although it uses at least one of them for its own transport. The different character of d-glucose uptake is underlined by its relative independence of pH (its K m is completely pH-insensitive) in contrast with all other sugars. At low concentrations, all sugars show mutual positive cooperativity in uptake, suggesting at least two transport sites plus possibly a modifier site on the carrier.  相似文献   

20.
The maltose transport system of Saccharomyces cerevisiae exists in two forms with Km values of approx. 4 mM and 70 mM, respectively. The Vmax of the high-Km form is about 4-fold greater than the Vmax of the low one. A rapid and irreversible inactivation of both forms is detected on protein synthesis impairment. This inactivation is stimulated by the catabolism of fermentable sugars and prevented during ethanol catabolism. It is concluded that both forms of the maltose transport system are regulated by catabolite inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号