首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nuclear envelope assembly was studied in vitro using extracts from Xenopus eggs. Nuclear-specific vesicles bound to demembranated sperm chromatin but did not fuse in the absence of cytosol. Addition of cytosol stimulated vesicle fusion, pore complex assembly, and eventual nuclear envelope growth. Vesicle binding and fusion were assayed by light and electron microscopy. Addition of ATP and GTP to bound vesicles caused limited vesicle fusion, but enclosure of the chromatin was not observed. This result suggested that nondialyzable soluble components were required for nuclear vesicle fusion. GTP gamma S and guanylyl imidodiphosphate significantly inhibited vesicle fusion but had no effect on vesicle binding to chromatin. Preincubation of membranes with 1 mM GTP gamma S or GTP did not impair vesicle binding or fusion when assayed with fresh cytosol. However, preincubation of membranes with GTP gamma S plus cytosol caused irreversible inhibition of fusion. The soluble factor mediating the inhibition by GTP gamma S, which we named GTP-dependent soluble factor (GSF), was titratable and was depleted from cytosol by incubation with excess membranes plus GTP gamma S, suggesting a stoichiometric interaction between GSF and a membrane component in the presence of GTP gamma S. In preliminary experiments, cytosol depleted of GSF remained active for fusion of chromatin-bound vesicles, suggesting that GSF may not be required for the fusion reaction itself. We propose that GTP hydrolysis is required at a step before the fusion of nuclear vesicles.  相似文献   

2.
吕学龙  祁燃  吕全龙  张传茂 《生命科学》2011,(11):1069-1075
核膜在细胞周期中呈现高度的动态性:在细胞分裂的前中期,核膜崩解并分散到细胞质中;在细胞分裂的后期,核膜开始在染色体的表面重新装配,最终形成完整的核膜结构。近期的研究发现,Ran GTP酶、物质转运蛋白importinβ、内层核膜蛋白LBR(lamin B receptor)以及核孔复合体蛋白nucleoporins在核膜重建的过程中起关键性调控作用,并受到细胞周期调控因子p34cdc2激酶的调节。LBR是一个八次跨膜的膜蛋白,主要定位于内层核膜。在细胞分裂的早期,随着核膜崩解,LBR与核膜崩解而生成的小膜泡一起分散到细胞质中;在细胞分裂的后期,通过LBR与importinβ相互结合,含有LBR的膜泡被importinβ携带至染色质的表面参与核膜重建。目前已知p34cdc2激酶对LBR与importinβ介导的核膜重建起重要调控作用。Nucleoporins是核孔复合体主要组分。随核膜崩解,核孔复合体解聚成nucleoporins,分散到细胞质中,或结合到其他亚细胞成分上。细胞分裂后期,核孔复合体伴随核膜装配而组装。  相似文献   

3.
Purified membrane vesicles isolated from sea urchin eggs form nuclear envelopes around sperm nuclei following GTP hydrolysis in the presence of cytosol. A low density subfraction of these vesicles (MV1), highly enriched in phosphatidylinositol (PtdIns), is required for nuclear envelope formation. Membrane fusion of MV1 with a second fraction that contributes most of the nuclear envelope can be initiated without GTP by an exogenous bacterial PtdIns-specific phospholipase C (PI-PLC) which hydrolyzes PtdIns to form diacylglycerides and inositol 1-phosphate. This PI-PLC hydrolyzes a subset of sea urchin membrane vesicle PtdIns into diglycerides enriched in long chain, polyunsaturated species as revealed by a novel liquid chromatography-mass spectrometry analysis. Large unilammelar vesicles (LUVs) enriched in PtdIns can substitute for MV1 in PI-PLC induced nuclear envelope formation. Moreover, MV1 prehydrolyzed with PI-PLC and washed to remove inositols leads to spontaneous nuclear envelope formation with MV2 without further PI-PLC treatment. LUVs enriched in diacylglycerol mimic prehydrolyzed MV1. These results indicate that production of membrane-destabilizing diglycerides in membranes enriched in PtdIns may facilitate membrane fusion in a natural membrane system and suggest that MV1, which binds only to two places on the sperm nucleus, may initiate fusion locally.  相似文献   

4.
Among the earliest events in postmitotic nuclear envelope (NE) assembly are the interactions between chromatin and the membranes that will fuse to form the NE. It has been proposed that interactions between integral NE proteins and chromatin proteins mediate initial membrane recruitment to chromatin. We show that several transmembrane NE proteins bind to DNA directly and that NE membrane proteins as a class are enriched in long, basic domains that potentially bind DNA. Membrane fractions that are essential for NE formation are shown to bind directly to protein-free DNA, and our data suggest that these interactions are critical for early steps in NE assembly.  相似文献   

5.
Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin beta negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin beta is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin but their fusion is blocked. The importin beta down-regulation of membrane fusion is Ran-GTP reversible. Indeed, excess RanGTP (RanQ69L) alone stimulates excessive membrane fusion, leading to intranuclear membrane tubules and cytoplasmic annulate lamellae-like structures. We propose that a precise balance of importin beta to Ran is required to create a correct double nuclear membrane and simultaneously to repress undesirable fusion events. Interestingly, truncated importin beta 45-462 allows membrane fusion but produces nuclei lacking any NPCs. This reveals distinct importin beta-regulation of NPC assembly. Excess full-length importin beta and beta 45-462 act similarly when added to prefused nuclear intermediates, i.e., both block NPC assembly. The importin beta NPC block, which maps downstream of GTPgammaS and BAPTA-sensitive steps in NPC assembly, is reversible by cytosol. Remarkably, it is not reversible by 25 microM RanGTP, a concentration that easily reverses fusion inhibition. This report, using a full reconstitution system and natural chromatin substrates, significantly expands the repertoire of importin beta. Its roles now encompass negative regulation of two of the major events of nuclear assembly: membrane fusion and NPC assembly.  相似文献   

6.
7.
8.
The P446L mutant Drosophila importin-beta (P446L-imp-beta) has been reported to prohibit--in dominant negative fashion--nuclear envelope (NE) assembly. Along elucidating the mode of action of P446L-imp-beta we studied in vitro NE assembly on Sepharose beads. While Drosophila embryo extracts support NE assembly over Sepharose beads coated with Ran, NE assembly does not take place in extracts supplied with exogenous P446L-imp-beta. A NE also forms over importin-beta-coated beads. Surprisingly, when immobilized to Sepharose beads P446L-imp-beta as efficiently recruits NE vesicles as normal importin-beta. The discrepancy in behavior of cytoplasmic and bead-bound P446L-imp-beta appears to be related to icreased--as compared to normal importin-beta--microtubule (MT) binding ability of P446L-imp-beta. While wild-type importin-beta is able to bind MTs and the binding decreases upon RanGTP interaction, P446L-imp-beta cannot be removed from the MTs by RanGTP. P446L-imp-beta, like normal importin-beta, binds some types of the nucleoporins that have been known to be required for NE assembly at the end of mitosis. It appears that the inhibitory effect of P446L-imp-beta on NE assembly is caused by sequestering some of the nucleoporins required for NE assembly to the MTs.  相似文献   

9.
The metazoan nuclear envelope (NE) breaks down and reforms at each mitosis. Nuclear pore complexes (NPCs), which allow nucleocytoplasmic transport during interphase, assemble into the reforming NE at the end of mitosis. Using in vitro NE assembly assays, we show that one of the two transmembrane nucleoporins, pom121, is essential for NE formation, whereas the second, gp210, is dispensable. Depletion of either pom121-containing membrane vesicles or the protein alone does not affect vesicle binding to chromatin but prevents their fusion to form a closed NE. When the Nup107-160 complex, which is essential for integration of NPCs into the NE, is also depleted, pom121 becomes dispensable for NE formation, suggesting a close functional link between NPC and NE formation and the existence of a checkpoint that monitors NPC assembly state.  相似文献   

10.
The molecular mechanism of nuclear envelope (NE) assembly is poorly understood, but in a cell-free system made from Xenopus eggs NE assembly is controlled by the small GTPase Ran [1,2]. In this system, Sepharose beads coated with Ran induce the formation of functional NEs in the absence of chromatin [1]. Both generation of Ran-GTP by the guanine nucleotide exchange factor RCC1 and GTP hydrolysis by Ran are required for NE assembly, although the roles of the GDP- and GTP-bound forms of Ran in the recruitment of precursor vesicles and their fusion have been unclear. We now show that beads coated with either Ran-GDP or Ran-GTP assemble functional nuclear envelopes in a cell-free system derived from mitotic human cells, forming pseudo-nuclei that actively transport proteins across the NE. Both RCC1 and the GTPase-activating protein RanGAP1 are recruited to the beads, allowing interconversion between Ran-GDP and Ran-GTP. However, addition of antibodies to RCC1 and RanGAP1 shows that Ran-GDP must be converted to Ran-GTP by RCC1 before precursor vesicles are recruited, whereas GTP hydrolysis by Ran stimulated by RanGAP1 promotes vesicle recruitment and is necessary for vesicle fusion to form an intact envelope. Thus, the GTP-GDP cycle of Ran controls both the recruitment of vesicles and their fusion to form NEs.  相似文献   

11.
12.
Lamin B methylation and assembly into the nuclear envelope   总被引:9,自引:0,他引:9  
Lamin B is reversibly methyl-esterified and phosphorylated during the mammalian cell cycle. In order to study the role of methylation in lamin B function, we isolated mitotic cells in the presence of the microtubule inhibitor, nocodazole. Following removal of nocodazole, methylation of mitotic lamin B was found to precede its assembly into the nuclear envelope as cells exited mitosis. Very little additional methylation took place on assembled lamins. We were able to slow the rate of lamin B methylation with methylthioadenosine (MTA). A delay in lamin B methylation was accompanied by a corresponding delay in assembly of lamin B into the envelope. The delay was approximately 20-30 min beyond the typical 60-70 min usually required. Assembly of lamins A and C, which are not methylated, was also delayed by MTA, although to a lesser degree, suggesting that an interaction between the lamins is necessary for formation of the nuclear envelope. Chromatin decondensation was also slowed in the presence of MTA. Other inhibitors of methylation which had no inhibitory effect on the methyl esterification of lamin B were tested and found to have no effect on envelope assembly or chromatin decondensation. These results were obtained with Chinese hamster ovary cells as well as with the stem cell line, PC 13. Dephosphorylation of lamin B normally follows a time course similar to that of nuclear envelope assembly. In the presence of MTA, however, lamin B assembly was slowed with little effect on dephosphorylation. This resulted in a large population of dephosphorylated, but unassembled, lamin B protein, demonstrating that dephosphorylation is not sufficient for envelope assembly. The lack of effect on the time course of dephosphorylation also suggests that MTA is not acting upstream of the methylation event.  相似文献   

13.
We have described the co-localization of PLCγ and SFK1/7 in vivo and in vitro, and demonstrated their recruitment together to nuclei during membrane binding. We hypothesize that SFK1/7 is activated in response to GTP hydrolysis, phosphorylating and priming PLCγ for activation and thus producing the fusogen DAG during NE assembly. In addition to enhancing our understanding of the temporal and spatial mechanisms of NE formation, this pathway offers a novel link between protein regulation and lipid metabolism that has implications for general membrane fusion events.  相似文献   

14.
Xenopus laevis egg extracts cell-free nuclear assembly system was used as an experimental model to study the process of nuclear lamina assembly in nuclear reconstitution in vitro. The experimental results showed that lamin was involved in the nuclear assembly in vitro. The assembly of nuclear lamina was preceded by the assembly of nuclear matrix, and probably, inner nuclear matrix assembly provided the basis for nuclear lamina assembly. Inhibition of normal assembly of nuclear lamina, by preincubating egg extracts cell-free system with anti-lamin antibodies, resulted in abnormal assembly of nuclear envelope, suggesting that nuclear envelope assembly is closely associated with nuclear lamina assembly.  相似文献   

15.
Xenopus laevis egg extracts cell-free nuclear assembly system was used as an experimental model to study the process of nuclear lamina assembly in nuclear reconstitutionin vitro. The experimental results showed that lamin was involved in the nuclear assemblyin vitro. The assembly of nuclear lamina was preceded by the assembly of nuclear matrix, and probably, inner nuclear matrix assembly provided the basis for nuclear lamina assembly. Inhibition of normal assembly of nuclear Iknina, by preincubating egg extracts cell-free system with anti-lamin antibodies, resulted in abnormal assembly of nuclear envelope, suggesting that nuclear envelope assembly is closely associated with nuclear lamina assembly. Project supported by the National Natural Science Foundation of China.  相似文献   

16.
R Pfaller  C Smythe  J W Newport 《Cell》1991,65(2):209-217
Dissociation and association of membranes with chromatin at the beginning and end of mitosis are critical in controlling nuclear dynamics during these stages of the cell cycle. Employing purified membrane and cytosolic fractions from Xenopus eggs, a simple assay was developed for the reversible binding of nuclear membrane vesicles to chromatin. We have shown, using phosphatase and kinase inhibitors, that membrane-chromatin association is regulated by a phosphatase/kinase system. In interphase, the balance in this system favors dephosphorylation, possibly of a membrane receptor, which then mediates chromatin binding. At mitosis the membrane receptor is phosphorylated, causing release of chromatin-bound membrane. Purified MPF kinase does not directly cause membranes to dissociate from chromatin. Rather, binding of membranes to chromatin at mitosis appears to be regulated indirectly by MPF through its action on a phosphatase/kinase system that directly modulates the phosphorylation state of a nuclear membrane component.  相似文献   

17.
Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.  相似文献   

18.
The primary nucleus of the green alga Acetabularia grows about 25,000-fold in volume while it is separated from the endoplasmic reticulum and the whole cytoplasm by a special paranuclear cisterna of a vacuolar labyrinthum system which shows only very few (two to six per square micrometer) and small (ca. 40-120 nm in diamter) fenestrations. The nuclear envelope does not bear polyribosomes, nor do they occur in the entire zone intermediate between the nuclear envelope and the paranuclear cisterna. It is suggested that this special form of nuclear envelope growth takes place by assembly from cytoplasmically synthesized proteins that are translocated across the paranuclear cisterna in a nonmembrane-structured form.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号