首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transmembrane orientation of the human erythrocyte glucose transporter was assessed based on polarized Fourier transform infrared and ultraviolet circular dichroism spectroscopic data obtained from oriented multilamellar films of the reconstituted transporter vesicles. Infrared spectra revealed that there are distinct vibrations for alpha-helical structure while the vibrational frequencies specific to beta-structure are characteristically absent. Analysis of linear dichroism of the infrared spectra further indicated that these alpha-helices in the transporter are preferentially oriented perpendicular to the lipid bilayer plane forming an effective tilt of less than 38 degrees from the membrane normal. Such a preferential orientation was further supported by ultraviolet circular dichroism spectra which reveal that the 208 nm Moffit band found in the detergent-solubilized preparation is absent in the film preparation. Linear dichroism data further indicated that D-glucose, a typical substrate, further reduces this effective tilt angle slightly.  相似文献   

2.
《Luminescence》2003,18(1):58-60
Mechanical sutural separation has been carried out in clinical orthodontics for controlling the growth of the craniofacial skeleton. This study was designed to evaluate the effects of linear polarized near‐infrared ray irradiation on the sutural expansion of rat sagittal suture. Twenty 8‐week‐old Wistar strain male rats were equally divided into experimental and control groups. Suture expansion was carried out for 5 days for all animals using an expansion appliance. The experimental animals were subjected to linear polarized near‐infrared irradiation. This study has demonstrated that linear polarized near‐infrared irradiation stimulates sutural expansion without any pathological changes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
D. Marsh 《Biophysical journal》1997,72(6):2710-2718
The transition moments for the amide bands from beta-sheet peptide structures generally do not exhibit axial symmetry about the director in linearly polarized Fourier transform infrared (FTIR) measurements on oriented systems. The angular dependences of the dichroic ratios of the amide bands are derived for beta-sheet structures in attenuated total reflection (ATR) and polarized transmission experiments on samples that are oriented with respect to the normal to the substrate and are randomly distributed with respect to the azimuthal angle in the plane of the orienting substrate. The orientational distributions of both the beta-strands and the beta-sheets are considered, and explicit expressions are given for the dichroic ratios of the amide I and amide II bands. The dichroic ratio of the amide II band, which is parallel polarized, can yield the orientation of the beta-strands directly, but to specify the orientations of the beta-sheets completely requires measurement of the dichroic ratios of both the amide I and amide II bands, or generally two bands with parallel and perpendicular polarizations. A random distribution in tilt of the planes of the beta-sheets does not give rise to equal dichroic ratios for bands with perpendicular and parallel polarizations, such as the amide I and amide II bands. The results are applied to previous ATR and polarized transmission FTIR measurements on a potassium channel-associated peptide, the Escherichia coli outer membrane protein OmpA, and the E. coli OmpF porin protein in oriented membranes.  相似文献   

4.
Circularly polarized (CP) thermal emission possesses huge application value in the fields of infrared detecting and polarimetric thermal imaging; however, the naturally occurring infrared source is incoherent and unpolarized. In this paper, we designed a broadband CP source adaptive for high temperature in consideration of the collision frequency of the electrons increasing with temperature. Compared with the structure proposed before, “I”-shaped resonators based on refractory plasmonic material generate the linearly polarized (LP) emission and the dielectric quarter-wave plate enhances the degree of emitted CP by suppressing the parasitic radiation. More than 80 % right-handed circularly polarized (RCP) emissivity in wavelengths ranging from 3.28 to 4.81 μm within 706 to 884 K is theoretically achieved.  相似文献   

5.
Analysis of infrared polarized absorbance spectra and linear dichroism spectra of reconstituted melibiose permease from Escherichia coli shows that the oriented structures correspond mainly to tilted transmembrane α-helices, forming an average angle of ∼26° with the membrane normal in substrate-free medium. Examination of the deconvoluted linear dichroism spectra in H2O and D2O makes apparent two populations of α-helices differing by their tilt angle (helix types I and II). Moreover, the average helical tilt angle significantly varies upon substrate binding: it is increased upon Na+ binding, whereas it decreases upon subsequent melibiose binding in the presence of Na+. In contrast, melibiose binding in the presence of H+ causes virtually no change in the average tilt angle. The data also suggest that the two helix populations change their tilting and H/D exchange level in different ways depending on the bound substrate(s). Notably, cation binding essentially influences type I helices, whereas melibiose binding modifies the tilting of both helix populations.  相似文献   

6.
We have investigated a point mutant of the HIV-1 fusion peptide in a compressed monolayer at the air-water interface. A variety of surface sensitive techniques were applied to study structural features under conditions mimicking the hydrophobic/hydrophilic environment of a biomembrane. Possible partitioning into the aqueous bulk phase and molecular areas were examined by surface activity based mass conservation plots. This shows that the peptide is practically fully accumulated in the interface. Secondary structure and orientation was analyzed by means of polarized infrared reflectivity. Brewster angle microscopy and scanning force microscopy contributed nanostructural images. At low surface pressures the molecules form anti-parallel beta-sheets lying flat on the interface. Upon a moderate increase of the lateral pressure a flat beta-turn structure appears with inter- and intramolecular H-bonds. We also observed aggregates forming fingerprint-like structures with a diameter of approximately double the hydrophobic length of a beta-turn conformation. Beyond approximately 18 mN m(-1) the beta-turns straighten up. The lowest measured tilt angle was 45 degrees at 36 mN m(-1).  相似文献   

7.
Surface plasmon polariton (SPP) excitation of the coupled light at small contact area of chromium pillars as the interface of metastructured gold funnel layer and silica medium can be enhanced locally in the gold meta-funnel-structured filter. In the present investigation, the filter is comprised of three layers, namely gold meta-funnels, nano-sized chromium pillars, and silica as the substrate. The incoming infrared (IR) waves, coupled with the excited plasmons at the first and second layers, form an excitation, known as deformed plasmon polariton. Asymmetric distribution of localized SPPs takes place owing to the inherent converging plasmonic feature of the gold funnel structure. The formation of reflection peaks with different magnitudes at different incidence angles of the polarized wave in the spectral characteristics makes the structure prominent for filtering the IR waves. Moreover, the gold meta-funnel-structured filter possesses the additional feature of distinguishing the type of polarized incidence wave. It was found that the transmission remains maximum corresponding to the normal incidence of the TE-polarized waves, whereas the TM-polarized waves over the same wavelength range are almost blocked for any value of incidence angle. The existence of transmission peaks corresponding to the TE waves demonstrates another application of this device as metastructured polarizer filter.  相似文献   

8.
The polarization properties of the local electric field in the gold–dielectric–gold multilayer nanoshells are investigated by theoretical calculation based on the quasi-static approximation. The calculation results show that the complete polarized incident light does not only stimulate the same directional polarized local electric field. The polarized angle of the local field may changes from 0° to 90° as the wavelength and location are changed. The distributions of local field polarization are different in dielectric layer or gold shell and display different features in different plasmonic hybridization mode. As the incident wavelength is increased, the hot spot of polarizing angle moves monotonously in the middle dielectric shell, whereas moves nonmonotonously in the gold shell and surrounding environment. In the gold shell, the gap between hot spots of polarizing angle may occur at the resonance frequency. However, the hot spots of polarizing angle always occur at the resonance frequencies in the surrounding environment. These interesting results show that the single-molecule detection based on metal nanostructure induced surface-enhanced Raman scattering and surface enhanced fluorescence could be optimized by adjusting the incident light polarization and frequency.  相似文献   

9.
Gulyar  S. A.  Tamarova  Z. A. 《Neurophysiology》2020,52(4):267-278
Neurophysiology - We compared the analgesic effects of continuous and frequency-modulated red and infrared LEDproduced polarized light (PL) measured in a formalin test model. The control group...  相似文献   

10.
The structure of the membrane bound state of the 178-residue thermolytic COOH-terminal channel forming peptide of colicin E1 was studied by polarized Fourier transform infrared (FTIR) spectroscopy. This fragment was reconstituted into DMPC liposomes at varying peptide/lipid ratios ranging from 1/25-1/500. The amide I band frequency of the protein indicated a dominant alpha-helical secondary structure with limited beta- and random structures. The amide I and II frequencies are at 1,656 and 1,546 cm-1, close to the frequency of the amide I and II bands of rhodopsin, bacteriorhodopsin and other alpha-helical proteins. Polarized FTIR of oriented membranes revealed that the alpha-helices have an average orientation less than the magic angle, 54.6 degrees, relative to the membrane normal. Almost all of the peptide groups in the membrane-bound channel protein undergo rapid hydrogen/deuterium (H/D) exchange. These results are contrasted to the alpha-helical membrane proteins, bacteriorhodopsin, and rhodopsin.  相似文献   

11.
Phytochrome from oats ( Avena sativa L. cv. Sol II), partially purified on brushite, was immobilized on Sepharose beads to which antiphytochrome immunoglobulin had been covalently linked. The immobilized phytochrome was first brought to the Pr form with unpolarized far-red light. The change in linear dichroism at 660 nm induced by plane polarized red light, and its reversal by plane polarized far-red light were then studied using a dual-wavelength spectrophotometer equipped with polarizing filters. The far-red light was most effective in reversing red-induced dichroism when the angle between the planes of polarization of red and far-red light was approximately 23°. From this it was computed that the long-wavelength transition moment of phytochrome rotates about 29° (or 180°–29°) with respect to the protein during conversion from Pr to Pfr. The reverse experiment, using unpolarized red light followed first by polarized far-red light and then polarized red light, with dichroism monitored at 730 nm, also gives most effective reversal for an angle of about 23° between polarization planes, but this corresponds to a transition moment rotation of about 36° (or 180°–36°). The present method is more straightforward but less accurate and confirms our earlier conclusion that the rotation angle is close to 32° (or 180°–32°) in contrast to the "in vivo" value of 90° found by several workers.  相似文献   

12.
Oriented multilayers of 1-myristoyl-2(1-13C)-myristoyl-sn-glycero-3-phosphatidylcholine (2[1-13C]DMPC) and 1-palmitoyl-2(1-13C)-palmitoyl-sn-glycero-3-phosphatidylcholine (2[1-13C]DPPC) were investigated by use of attenuated total reflection infrared spectroscopy with polarized light. Experiments were performed with the aim to determine the orientation of the two ester groups in these phospholipids in the solid state and in the hydrated state at temperatures below and above the respective gel to liquid-crystalline phase transitions. Substitution of the naturally occurring 12C carbonyl carbon atom by 13C in the ester group of the sn-2 chain of DMPC and DPPC shifts the infrared absorption of the carbonyl double bond stretching vibration to lower frequency. This results in two well-resolved ester C=O bands which can be assigned unequivocally to the sn-1 and sn-2 chains as they are separated by more than 40 cm-1. The two ester CO-O single bond stretching vibrations of the molecular fragments-CH2CO-OC-are also affected and the corresponding infrared absorption band shifts by 20 cm-1 on 13C-labeling of the carbonyl carbon atom. From the dichroic ratios of the individual ester bands in 2(1-13C)DMPC and 2(1-13C)DPPC we were able to demonstrate that the sn-1 and sn-2 ester C=O groups are similarly oriented with respect to the bilayer plane, with an angle greater than or equal to 60 degrees relative to the bilayer normal. The two CO-O single bonds on the other hand have very different orientations. The CH2CO-OC fragment of the sn-1 chain is oriented along the direction of the all-trans methylene chain, whereas the same molecular segment of the sn-2 carbon chain is directed toward the bilayer plane. This orientation of the ester groups is retained in the liquid-crystalline phase. The tilt angle of the hydrocarbon all-trans chains, relative to the membrane normal, is 25 degrees in the solid state of DMPC and DPPC multibilayers. In the hydrated gel state this angle varies between 26 degrees and 30 degrees, depending on temperature. Neither the orientation of the phosphate group, nor that of the choline group varies significantly in the different physical states of these phospholipids.  相似文献   

13.
《FEBS letters》1986,202(2):356-360
The possibility that light-induced protein conformational changes accompany the formation of the M412 species in the bacteriorhodopsin photocycle is investigated by polarized Fourier transform infrared (FTIR) spectroscopy on oriented films of purple membrane. From the light-induced FTIR dichroism changes, it is estimated that: (i) the CO stretching vibration at 1762 cm−1, which has been assigned to a protonated Asp carboxyl group in M412 [(1985) Biochemistry 24, 400-407], is oriented at (θ = 35 ± 5° from the normal to the membrane plane; (ii) the limit for the change in the average tilt angle of the α-helices after photoconversion is less than 2°. The latter observation excludes the large variations in the protein conformation during the M412 formation proposed by Draheim and Cassim [(1985) Biophys. J. 47, 497-507].  相似文献   

14.
A peptide designed to form a homo-oligomeric transmembrane helical bundle was reconstituted into lipid bilayers and studied by using (2)H NMR (nuclear magnetic resonance) with magic angle spinning to confirm that the helical interface corresponds to the interface intended in the design. The peptide belongs to a family of model peptides derived from a membrane-solubilized version of the water-soluble coiled-coil GCN4-P1. The variant studied here contains two asparagines thought to engage in interhelical hydrogen bonding critical to the formation of a stable trimer. For the NMR studies, three different peptides were synthesized, each with one of three consecutive leucines in the transmembrane region deuterium labeled. Prior to NMR data collection, polarized infrared spectroscopy was used to establish that the peptides were reconstituted in lipid bilayers in a transmembrane helical conformation. The (2)H NMR line shapes of the three different peptides are consistent with a trimer structure formed by the designed peptide that is stabilized by inter-helical hydrogen bonding of asparagines at positions 7 and 14.  相似文献   

15.
The tensor of the high-frequency conductivity of a plasma created via tunnel ionization of atoms in the field of linearly or circularly polarized radiation is derived. It is shown that the real part of the conductivity tensor is highly anisotropic. In the case of a toroidal velocity distribution of photoelectrons, the possibility of amplification of a weak high-frequency field polarized at a sufficiently large angle to the anisotropy axis of the initial nonequilibrium distribution is revealed.  相似文献   

16.
The Pseudomonas bacteriophage Pf1 is a long ( approximately 2000 nm) and thin ( approximately 6.5 nm) filament consisting of a covalently closed, single-stranded DNA genome of 7349 nucleotides coated by 7350 copies of a 46-residue alpha-helical subunit. The coat subunits are arranged as a superhelix of C(1)()S(5.4)() symmetry (class II). Polarized Raman and polarized FTIR spectroscopy of oriented Pf1 fibers show that the packaged single-stranded DNA genome is ordered specifically with respect to the capsid superhelix. Bases are nonrandomly arranged along the capsid interior, deoxynucleosides are uniformly in the C2'-endo/anti conformation, and the average DNA phosphodioxy group (PO(2)(-)) is oriented so that the line connecting the oxygen atoms (O.O) forms an angle of 71 degrees +/- 5 degrees with the virion axis. Raman and infrared amide band polarizations show that the subunit alpha-helix axis is inclined at an average angle of 16 degrees +/- 4 degrees with respect to the virion axis. The alpha-helical symmetry of the capsid subunit is remarkably rigorous, resulting in splitting of Raman-active helix vibrational modes at 351, 445 and 1026 cm(-)(1) into apparent A-type and E(2)()-type symmetry pairs. The subunit tyrosines (Tyr 25 and Tyr 40) are oriented with phenoxyl rings packed relatively close to parallel to the virion axis. The Tyr 25 and Tyr 40 orientations of Pf1 are surprisingly close to those observed for Tyr 21 and Tyr 24 of the Ff virion (C(5)()S(2)() symmetry, class I), suggesting a preferred tyrosyl side chain conformation in packed alpha-helical subunits, irrespective of capsid symmetry. The polarized Raman spectra also provide information on the orientations of subunit alanine, valine, leucine and isoleucine side chains of the Pf1 virion.  相似文献   

17.
Optical ellipsometry studies of single, skinned muscle fibers conducted on the diffraction orders have yielded spectra that are sensitive to the state of the fiber. The linearly polarized light field vector becomes elliptically polarized as it passes through the fiber and may be collected at the diffraction orders. Fibers that have been subjected to extraction of myosin (0.6 M KCl) retain a weak diffraction pattern and exhibit a substantially decreased depolarization of incident linearly polarized light. A significant decrease in polarization is seen in skinned fibers that are subject to an increase in pH from 7.0 to 8.0. This increase in pH results in a decrease of approximately 30% in the depolarization angle of single fibers. The major decrease in depolarization angle that we observe at pH 8.0 is consistent with the notion that as cross-bridges move out from the shaft of the thick filament, their ability to cause depolarization of the incident linearly polarized light decreases. This interpretation is also consistent with the work of Ueno and Harrington where the decrease in the ability to cross-link S-1 and S-2 to the thick filament at pH 8.2 suggests cross-bridge movement away from the thick filament. A large decrease in birefringence, seen after treatment of skinned fibers with alpha-chymotrypsin, appears to be related to the breakdown of myosin into rod, S-1, heavy meromyosin, and light meromyosin.  相似文献   

18.
Polarized and specular reflectance variation with leaf surface features   总被引:2,自引:0,他引:2  
The linearly polarized reflectance from a leaf depends on the characteristics of the leaf surface. In the present study the leaf reflectance of a number of plant species with varying surface characteristics was measured at the Brewster angle with a polarization photometer having 5 visible and near-infrared wavelength bands. We found that all leaf surfaces polarized incident light. Differences among species could be explained by variation in surface features. The results support our hypothesis that the polarized light is reflected by the leaf surface, not by its interior. Two mechanisms appeared responsible for the linearly polarized reflectance: (1) specular reflectance and (2) surface particle scattering. In most cases, large values of linearly polarized reflectance could be attributed to specular reflectance from the leaf surface. Attribution required knowledge of the optical dimensions of features on the leaf surface.  相似文献   

19.
We show that the commonly used Rayleigh-Debye method for calculating light scattering can lead to significant errors when used for describing scattering from dilute solutions of long rigid polymers, errors that can be overcome by use of the easily applied Shifrin approximation. In order to show the extent of the discrepancies between the two methods, we have performed calculations at normal incidence both for polarized and unpolarized incident light with the scattering intensity determined as a function of polarization angle and of scattering angle, assuming that the incident light is in a spectral region where the absorption of hemoglobin is small. When the Shifrin method is used, the calculated intensities using either polarized or unpolarized scattered light give information about the alignment of polymers, a feature that is lost in the Rayleigh-Debye approximation because the effect of the asymmetric shape of the scatterer on the incoming polarized electric field is ignored. Using sickle hemoglobin polymers as an example, we have calculated the intensity of light scattering using both approaches and found that, for totally aligned polymers within parallel planes, the difference can be as large as 25%, when the incident electric field is perpendicular to the polymers, for near forward or near backward scattering (0 degrees or 180 degrees scattering angle), but becomes zero as the scattering angle approaches 90 degrees. For randomly oriented polymers within a plane, or for incident unpolarized light for either totally oriented or randomly oriented polymers, the difference between the two results for near forward or near backward scattering is approximately 15%.  相似文献   

20.
Florent Calvo 《Chirality》2015,27(3):253-261
The nonlinear response and dissociation propensity of an isolated chiral molecule, camphor, to a circularly polarized infrared laser pulse was simulated by molecular dynamics as a function of the excitation wavelength. The results indicate similarities with linear absorption spectra, but also differences that are ascribable to dynamical anharmonic effects. Comparing the responses between left‐ and right‐circularly polarized pulses in terms of dissociation probabilities, or equivalently between R‐ and S‐camphor to a similarly polarized pulse, we find significant differences for the fingerprint C = O amide mode, with a sensitivity that could be sufficient to possibly enable vibrational circular dichroism as an action technique for probing molecular chirality and absolute conformations in the gas phase. Chirality 27:253–261, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号