首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since we have found previously that adult donor skin fibroblasts (TIG-114) migrated more slowly in serum-depleted medium than in medium supplemented with 10% FBS, we tried to identify a factor(s) which promotes fibroblast migration from the edge of a denuded area in a monolayer. In medium supplemented with 10% FBS, the effects of both suramin, a competitor of growth factors at the receptor level, and monensin, an inhibitor of the secretion of extracellular matrix, were examined. Both substances suppressed cell migration, suggesting that growth factors and matrix substances are important for cell migration. Then, we examined the effects of growth factors and extracellular matrix on fibroblast migration in serum-free medium. Platelet-derived growth factor (PDGF), basic fibroblast growth factor, acidic fibroblast growth factor, and transforming growth factor-beta did not stimulate cell migration. Type I collagen, plasma fibronectin, and heparin also did not promote cell migration. However, the combination of PDGF and type I collagen did promote cell migration. Addition of anti-PDGF antibody reduced the stimulatory effect induced by the combination of PDGF and type I collagen. These results suggest that the copresence of growth factors and extracellular matrix regulates fibroblast migration into a denuded area in a monolayer.  相似文献   

2.
We have recently demonstrated the formation of interconnecting canalicular cell processes in bone cells upon contact with basement membrane components. Here we have determined whether growth factors in the reconstituted basement membrane (Matrigel) were active in influencing the cellular network formation. Various growth factors including transforming growth factor beta (TGF-beta), epidermal growth factor (EGF), insulin-like growth factor 1, bovine fibroblast growth factor (bFGF), and platelet-derived growth factor (PDGF) were identified in Matrigel. Exogenous TGF-beta blocked the cellular network formation. Conversely, addition of TGF-beta 1 neutralizing antibodies to Matrigel stimulated the cellular network formation. bFGF, EGF, and PDGF all promoted cellular migration and organization on Matrigel. Addition of bFGF to MC3T3-E1 cells grown on Matrigel overcame the inhibitory effect of TGF-beta. Some TGF-beta remained bound to type IV collagen purified from the Engelbreth-Holm-Swarm tumor matrix. These data demonstrate that reconstituted basement membrane contains growth factors which influence cellular behavior, suggesting caution in the interpretation of experiments on cellular activity related to Matrigel, collagen type IV, and possibly other extracellular matrix components.  相似文献   

3.
Anchorage-independent growth, i.e., growth in semi-solid medium is considered a marker of cellular transformation of fibroblast cells. Diploid human fibroblasts ordinarily do not exhibit such growth but can grow transiently when medium contains high concentrations of fetal bovine serum. This suggests that some growth factor(s) in serum is responsible for anchorage-independent growth. Much work has been done to characterize the peptide growth factor requirements of various rodent fibroblast cells for anchorage-independent growth; however, the requirements of human fibroblasts are not known. To determine the peptide growth factor requirements of human fibroblasts for anchorage-independent growth, we used medium containing serum that had had its peptide growth factors inactivated. We found that either platelet-derived growth factor (PDGF) or the basic form of fibroblast growth factor (bFGF) induced anchorage-independent growth. Epidermal growth factor (EGF) did not enhance the growth induced by PDGF, or did so only slightly. Transforming growth factor beta (TGF-beta) decreased the growth induced by PDGF. EGF combined with TGF-beta induced colony formation in semi-solid medium at concentrations at which neither growth factor by itself was effective, but the combination was much less effective in stimulating anchorage-independent growth than PDGF or bFGF. This work showed that PDGF, or bFGF, or EGF combined with TGF-beta can stimulate anchorage-independent growth of nontransformed human fibroblasts. The results support the idea that cellular transformation may reduce or eliminate the need for exogenous PDGF or bFGF.  相似文献   

4.
5.
We examined the effects of basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) on the migration of vascular adventitial fibroblasts (VAFs) isolated from rat aortic adventitiae. Both bFGF and PDGF significantly stimulated VAF migration in vitro. An antibody to rat beta(3) integrin reduced bFGF-stimulated migration in a dose dependent manner. Moreover, VAF migration was inhibited in the presence of cyclic RGD (cRGD) peptide. However, PDGF-directed migration was blocked only by equivalent cRGD peptide but not by antibody to beta(3) integrin. These data suggest that alpha(v)beta(3) integrin mediates VAF migration stimulated by bFGF and that chemoattractant directed migration may be through distinct integrins.  相似文献   

6.
Radiation therapy for cancer permanently damages tissue in the line of treatment. This study sought to establish a serum-free protocol to evaluate the growth of irradiated fibroblasts and to analyze the levels of basic fibroblast growth factor (bFGF) and transforming growth factor-beta (TGF-beta) compared with normal fibroblasts. One irradiated cell line of human dermal fibroblasts was established from an intraoperative specimen obtained from a patient who had undergone radiation therapy for head and neck cancer. Irradiated and normal fibroblasts were then plated in UltraCULTURE (serum and growth factor free), modified Webber's medium (bFGF 50 ng/ml, insulin-like growth factor 100 ng/ml), and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum (serum with undefined basal growth factors). Irradiated cells were also seeded in UltraCULTURE with 50 and 100 ng/ml of bFGF. Cell counts were performed at 0, 1, 3, 5, and 7 days, and cell supernatants were assayed for bFGF and TGF-beta. Irradiated and normal fibroblasts exhibited stronger growth in modified Webber's medium than in Dulbecco's Modified Eagle Medium with 10% fetal bovine serum. Growth of irradiated fibroblasts under bFGF modulation was similar to their growth in Webber's medium. Furthermore, irradiated fibroblasts remained viable in a serum-free and growth factor-free environment for at least 7 days; however, their growth and autocrine growth factor production was less than that of normal cells. This confirms the results of previous studies suggesting that cells from irradiated tissue undergo cellular changes. This study provides an effective model for the first-line evaluation of agents to improve wound healing, and it helps to establish standard levels of bFGF and TGF-beta production for irradiated fibroblasts.  相似文献   

7.
Fibroblast-collagen matrix contraction has been used as a model system to study how cells organize connective tissue. Previous work showed that lysophosphatidic acid (LPA)-stimulated floating collagen matrix contraction is independent of Rho kinase while platelet-derived growth factor (PDGF)-stimulated contraction is Rho kinase-dependent. The current studies were carried out to determine the signaling mechanisms of basic fibroblast growth factor (bFGF)-stimulated fibroblast-collagen matrix contraction. Both bFGF and LPA promoted equally collagen matrix contraction well. Three different inhibitors, LY294002 for phosphatidylinositol-3-kinase (PI3K), C3 exotransferase for Rho and Y27632 for Rho kinase, suppressed the bFGF-stimulated fibroblast-collagen matrix contraction. With bFGF stimulation, fibroblasts spread with prominent stress fiber network formation and focal adhesions. In the presence of Rho kinase inhibitor, focal adhesions and stress fibers were mostly lost. We demonstrated that bFGF stimulation for fibroblast caused transient Rac and Rho activation but did not activate Cdc42. In addition, bFGF enhanced fibroblast migration in wound healing assay. The present study implicates PI3K, Rac, Rho, and Rho kinase as being involved in bFGF-stimulated collagen matrix contraction. The elucidation of bFGF-triggered signal transduction may be an important clue to understand the roles of bFGF in wound healing.  相似文献   

8.
We reported previously that human fetal skin fibroblast migration into a denuded area was stimulated by an autocrine factor, basic fibroblast growth factor (bFGF). Since the signal transduction pathway of this migration is unknown, we attempted to clarify it by comparing this fibroblast migration with a previously reported bovine endothelial cell migration into a wounded area stimulated by an addition of bFGF, in which the bFGF signal was mediated by phospholipase A(2)-coupled G-protein and phospholipase A(2) (PLA(2)) via arachidonic acid. Our study demonstrated that pertussis toxin, a specific inhibitor of PLA(2)-coupled G-protein, did not suppress human fetal skin fibroblast migration, but 2-(p-amylcinnamyl)amino-4-chlorobensoic acid (ONO-RS-082), a PLA(2) inhibitor, did. Since ONO-RS-082 is a non-specific PLA(2) inhibitor, a cytoplasmic, Ca-dependent PLA(2) (cPLA(2)) inhibitor, AACOCF3, was examined. AACOCF3 suppressed cell migration in certain concentrations. The PLA(2) inhibitor-suppressed cell migration was restored by adding arachidonic acid, and cell migration suppressed by anti-bFGF antibodies was restored by adding arachidonic acid. In addition, pertussis toxin did not suppress arachidonic acid release, which shows an action of PLA(2), but AACOCF3 did. These results indicate that human fetal skin fibroblast migration stimulated by an autocrine factor, bFGF, was mediated by PLA(2) via arachidonic acid without the involvement of PLA(2)-coupled G-protein.  相似文献   

9.
Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5 with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment.  相似文献   

10.
L E Stein 《Acta anatomica》1985,123(4):247-252
Eighteen tail tendon fascicles were explanted from a 40-day postpartum rat and maintained in both serum-supplemented and serum-free Eagle's minimal essential medium for 2 weeks. Epitendon and paratendon connective tissues were excluded from these explants. Tendon fibroblasts maintained in serum-supplemented medium proliferated and synthesized collagen. Tendon fibroblasts explanted in serum-free medium remained viable but did not proliferate. Fibroblast growth factor and platelet-derived growth factor were shown to stimulate proliferation of mature tendon fibroblasts in serum-free medium.  相似文献   

11.
Human fibroproliferative disorders like hypertrophic scarring of the skin are characterized by increased contractility and excess extracellular matrix synthesis. A beneficial role of transforming growth factor (TGF)-beta in wound healing was proposed; however, chronic stimulation by this cytokine leads to fibrosis. In the present report, the intracellular TGF-beta signaling in fibroblasts derived from hypertrophic scars and normal skin was examined. In an attempt to intervene in profibrogenic TGF-beta functions, ectopic expression of Smad7 or dominant negative Smads3/4 completely inhibited contractility of scar-derived and normal fibroblasts after suspension in collagen gels. Both cell types displayed constitutive Smad2/3 phosphorylation and (CAGA)9-MLP-Luc activity with expression and phosphorylation of Smad3 being predominant in hypertrophic scar-derived fibroblasts. Down-regulation of intrinsic signaling with various TGF-beta antagonists, e.g. soluble TGF-beta receptor, latency-associated peptide, and anti-TGF-beta1 antibodies, confirms autocrine TGF-beta stimulation of both cell populations. Further, Smad7 expression inhibited alpha1 (I) collagen and alpha-smooth muscle actin expression. In summary, our data indicate that autocrine TGF-beta/Smad signaling is involved in contractility and matrix gene expression of fibroblasts from normal and hypertrophic scars. Smad7 inhibits these processes and may exert beneficial effects on excessive scar formation.  相似文献   

12.
Heparanase activity is correlated with the metastatic potential of several cancer cells and is a key enzyme in the breakdown of tissue barriers. It is also involved in the regulation of growth factor and cytokine activity. However, little is known about the factors that induce heparanase in cancer cells. We investigated the effect of three growth factors, platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), on heparanase mRNA induction in lung cancer cells in vitro. In addition, we examined the effect of erythromycin (EM) and clarithromycin (CAM), which are 14-membered ring macrolide antibiotics that act as biological response modifiers, on the expression of heparanase mRNA induced by growth factors. PDGF, HGF and bFGF stimulated cell migration activity and enhanced the expression of heparanase mRNA in the human lung adenocarcinoma cell line A549. Via different mechanisms, EM and CAM modulate the induction by these factors of heparanase mRNA expression on A549 cells. EM also significantly suppressed A549 cell migration induced by PDGF and HGF, and CAM significantly suppressed A549cell migration induced by bFGF. The results suggest that the growth factors PDGF, HGF and bFGF are important inducers of heparanase in potentially invasive and metastatic cancer cells. The suppressive effect of heparanase mRNA expression by EM and CAM may have interestingtherapeutic applications in the prevention of metastasis.  相似文献   

13.
Angiogenesis is a crucial event in the progression of diabetic retinopathy. Migration and proliferation of endothelial cells (EC) are important steps in angiogenesis and are caused by angiogenic factors such as basic fibroblast growth factor (bFGF). In this work, capillary EC were isolated from rabbit retinal tissues and rabbit retinal EC (RREC) were found to secrete a migration factor for RREC in conditioned medium (CM). The activity was inhibited by an anti-platelet-derived growth factor (PDGF) antibody, but not by an anti-bFGF antibody. We also found that RREC showed a migratory response to PDGF. The response was induced by PDGF-BB and PDGF-AB dose dependently, but not by PDGF-AA, indicating that it was mediated by PDGF-β receptor-dependent pathways, and that the PDGF-like factor was PDGF-BB or -AB. In addition, PDGF-BB induced the proliferation of RREC as well as bFGF. These data indicate that RREC have an autocrine pathway of PDGF by the secretion of and the response to PDGF. PDGF may play significant parts in angiogenesis in the progression of diabetic retinopathy. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Our results show that stimulation by serum of dense cultures of 3T3 cells rapidly induced increased synthesis of a growth inhibitor (mIGFBP-3) capable of binding IGF. mIGFBP-3 was secreted by stimulated cells immediately after its synthesis, and accumulated in the medium. Accumulation of mIGFBP-3 in the medium increased, as a function of growth factor (bFGF, PDGF, insulin) concentrations and time. bFGF was the best stimulatory factor for both DNA synthesis and accumulation of mIGFBP-3 in the first 24 h of incubation. DNA synthesis was arrested after 48 h of incubation with bFGF when accumulation of mIGFBP-3 was maximal. Since we showed that mIGFBP-3 is able to inhibit bFGF stimulation of DNA synthesis in mouse fibroblasts, it is possible that the accumulation of mIGFBP-3 induces a feedback regulation of cell growth.  相似文献   

15.
Cultured endothelial cells produce a growth factor similar or identical to platelet-derived growth factor (PDGF). Endothelial cells are able to proliferate in plasma-supplemented medium, while most nontransformed cells require serum-supplemented medium. Since PDGF is a major serum mitogen, we have tested the possibility that endothelial cells interact with and respond to the autologously produced PDGF-like (PDGF-c) protein. We have found that bovine aortic and rat heart endothelial cells express little or no cell surface PDGF receptors as determined by binding of pure 125I-PDGF. Treating these cells under acidic conditions, which release receptor-bound PDGF in control cells without affecting receptor function, did not reveal a population of cryptic receptors. In addition, when rat heart endothelial cells were grown in the presence of an antibody to PDGF, proliferation was unimpaired, though no detectable free PDGF was present in the medium. An equivalent amount of antibody completely blocked the mitogenic response of human fibroblasts that had been preincubated for 1 h at 37 degrees C with an equivalent dose of PDGF. Thus, endothelial cells do not respond mitogenically in a manner that would be expected from the interaction of autologously produced PDGF with its cell surface receptor. Endothelial cells were detergent-solubilized and immobilized on nitrocellulose in an attempt to detect the presence of intracellular PDGF receptors. Specific binding of 125I-PDGF to adsorbed, solubilized bovine aortic or rat heart endothelial cells was undetectable, though significant binding to adsorbed, solubilized fibroblasts, used as a positive control, was observed. We conclude that endothelial cells do not have detectable intracellular PDGF receptors.  相似文献   

16.
Age dependent production of a competence factor by human fibroblasts   总被引:6,自引:0,他引:6  
Several cell types such as Balb/c 3T3 have been shown to require platelet-derived growth factor (PDGF); however, strains of human fibroblasts from fetal donors have been shown to divide in medium containing plasma free of PDGF. Since human fibroblasts have been demonstrated to secrete other peptide growth factors such as somatomedin-C, we have undertaken a study to determine if fibroblasts derived from fetal donors are capable of producing a mitogen(s) which will substitute for PDGF and support growth in plasma alone. Quiescent human fibroblasts from donors ages 12-wk embryo, newborn, and 3-yr-old were exposed to serum-free minimum essential medium (MEM) for 24 hr. The conditioned media collected from embryonic and newborn fibroblast donors were demonstrated to stimulate growth in the 3-yr-old cells with the addition of plasma alone, whereas conditioned medium from the 3-yr-old donor cells was without effect. The increases in growth and DNA synthesis were dependent upon concentration of media used. Conditioned medium derived from newborn fibroblasts also supported 3-yr-old cell growth but embryonic conditioned medium was more potent. The embryonic conditioned medium factor was heat and acid stable but destroyed by trypsin and excluded by a 5,000 (MW) molecular weight filter. The factor(s) had full competence factor activity since transient exposure to fibroblasts (3-yr-old donor) stimulated 78% nuclear labeling vs. 81% with continuous exposure. These results support the concept that there is an age-dependent production of a competence factor by human fibroblasts which may partially account for their capacity to grow in medium devoid of PDGF and supplemented with plasma alone.  相似文献   

17.
Cardiac nonmyocytes, primarily fibroblasts, surround cardiac myocytes in vivo. We examined whether nonmyocytes could modulate myocyte growth by production of one or more growth factors. Cardiac myocyte hypertrophic growth was stimulated in cultures with increasing numbers of cardiac nonmyocytes. This effect of nonmyocytes on myocyte size was reproduced by serum-free medium conditioned by the cardiac nonmyocytes. The majority of the nonmyocyte-derived myocyte growth-promoting activity bound to heparin-Sepharose and was eluted with 0.75 M NaCl. Several known polypeptide growth factors found recently in cardiac tissue, namely acidic fibroblast growth factor (aFGF), basic FGF (bFGF), platelet-derived growth factor (PDGF), tumor necrosis factor alpha (TNF alpha), and transforming growth factor beta 1 (TGF beta 1), also caused hypertrophy of cardiac myocytes in a dose-dependent manner. However, the nonmyocyte-derived growth factor (tentatively named NMDGF) could be distinguished from these other growth factors by different heparin-Sepharose binding profiles (TNF alpha, aFGF, bFGF, and TGF beta 1) by neutralizing growth factor-specific antisera (PDGF, TNF alpha, aFGF, bFGF, and TGF beta 1), by the failure of NMDGF to stimulate phosphatidylinositol hydrolysis (PDGF and TGF beta 1), and, finally, by the apparent molecular weight of NMDGF (45-50 kDa). This nonmyocyte-derived heparin-binding growth factor may represent a novel paracrine growth mechanism in myocardium.  相似文献   

18.
In response to cutaneous injury, expression of collagenase-1 is induced in keratinocytes via alpha2beta1 contact with native type I collagen, and enzyme activity is essential for cell migration over this substratum. However, the cellular mechanism(s) mediating integrin signaling remain poorly understood. We demonstrate here that treatment of keratinocytes cultured on type I collagen with epidermal growth factor receptor (EGFR) blocking antibodies or a specific receptor antagonist inhibited cell migration across type I collagen and the matrix-directed stimulation of collagenase-1 production. Additionally, stimulation of collagenase-1 expression by hepatocyte growth factor, transforming growth factor-beta1, and interferon-gamma was blocked by EGFR inhibitors, suggesting a required EGFR autocrine signaling step for enzyme expression. Collagenase-1 mRNA was not detectable in keratinocytes isolated immediately from normal skin, but increased progressively following 2 h of contact with collagen. In contrast, EGFR mRNA was expressed at high steady-state levels in keratinocytes isolated immediately from intact skin but was absent following 2 h cell contact with collagen, suggesting down-regulation following receptor activation. Indeed, tyrosine phosphorylation of the EGFR was evident as early as 10 min following cell contact with collagen. Treatment of keratinocytes cultured on collagen with EGFR antagonist or heparin-binding (HB)-EGF neutralizing antibodies dramatically inhibited the sustained expression (6-24 h) of collagenase-1 mRNA, whereas initial induction by collagen alone (2 h) was unaffected. Finally, expression of collagenase-1 in ex vivo wounded skin and re-epithelialization of partial thickness porcine burn wounds was blocked following treatment with EGFR inhibitors. These results demonstrate that keratinocyte contact with type I collagen is sufficient to induce collagenase-1 expression, whereas sustained enzyme production requires autocrine EGFR activation by HB-EGF as an obligatory intermediate step, thereby maintaining collagenase-1-dependent migration during the re-epithelialization of epidermal wounds.  相似文献   

19.
Abstract. In the chick embryo there is a population of chondrogenic fibroblasts known as scleral fibroblasts. Scleral fibroblasts in primary culture secrete multiple autocrine growth-promoting factors, scleral autocrine factors (SAFs), into protein-free medium (Watanabe et al . 1989). One such factor, SAF-IIa, which is heat-labile and binds to heparin, shows strong DNA synthesis-promoting activity on the mouse fibroblast cell line, BALB/c 3T3 A31 cells and has a molecular weight of c . 16 kDa by gel filtration. These data suggest that SAF-IIa is related to growth factors of the FGF family. However, the effects of heparin augmentation on the growth-promoting activity suggest that SAF-IIa is not identical to aFGF or bFGF, when assayed on scleral fibroblasts and also on BALB/c 3T3 A31 cells. The other heat-labile autocrine growth-promoting factor, SAF-IIb, shows weak binding to heparin and no growth-promoting activity for BALB/c 3T3 A31 cells. The heat-resistant growth factor, SAF-I, is effective in enhancing the proliferation of BALB/c 3T3 cells, and its activity is increased by heat treatment. Whole-embryo fibroblasts, which show low autocrine growth in protein-free medium, produce mainly SAF-IIa-like growth-promoting activity and do not produce SAF-I. This indicates that the strong proliferative activity of scleral fibroblasts in vitro can be attributed to the production of a strong and stable autocrine factor, SAF-I, in the growing phase (Watanabe et al . 1989) and this is a specialized property of the chondrogenic cells of the sclera.  相似文献   

20.
Three-dimensional (3D) cell-matrix cultures provide a useful model to analyze and dissect the structural, functional, and mechanical aspects of cell-matrix interactions and motile behavior important for cell and tissue morphogenesis. In the current studies we tested the effects of serum and physiological growth factors on the morphogenetic behavior of human fibroblasts cultured on the surfaces of 3D collagen matrices. Fibroblasts in medium containing serum contracted into clusters, whereas cells in medium containing platelet-derived growth factor (PDGF) were observed to migrate as individuals. The clustering activity of serum appeared to depend on lysophosphatidic acid, required cell contraction based on inhibition by blocking Rho kinase or myosin II, and was reversed upon switching to PDGF. Oncogenic Ras transformed human fibroblasts did not exhibit serum-stimulated cell clustering. Our findings emphasize the importance of cell-specific promigratory and procontractile growth factor environments in the differential regulation of cell motile function and cell morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号