首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Resting suspensions of cells of Saccharomyces cerevisiae grown in iron-rich or iron-deficient conditions were studied by following the fluorescence emission changes (lambda em. 400-460 nm, lambda exc. 300-340 nm) occurring in these suspensions upon addition of glucose and ferric iron. The results show that, in addition to NAD(P)H, metabolites of the aromatic amino acid pathway interfere with the fluorescence measurements, and that they could be involved in ferric iron reduction. Wild-type strains of S. cerevisiae are known to excreted anthranilic acid and 3-hydroxyanthranilic acid in response to glucose. The major fluorescing compound excreted by a chorismate-mutase-deficient mutant strain of S. cerevisiae was identified as anthranilic acid. The excretion of anthranilic and 3-hydroxyanthranilic acids was correlated with the ferric-reducing capacity of the extracellular medium. Excretion during growth was much greater by cells cultured in iron-rich medium than by cells grown in iron-deficient medium. The possibility was examined that a link could exist between the biosynthesis of aromatics and the ferri-reductase activity of the cells, via chorismate synthase and its putative diaphorase-associated activity. Two ferri-reductase-deficient mutants excreted much less 3-hydroxyanthranilate than did the parental wild-type strains. However, the ferri-reductase activity of a chorismate-synthase-deficient mutant was comparable to that of the parental strain.  相似文献   

2.
Temperature-dependent conformational transitions of spin-labeled poly(U) at low temperature in spermidine and cesium chloride buffer have been measured by electron spin resonance spectroscopy. The Arrhenius plot shows the existence of the order-disorder transition at a temperature close to that obtained from absorbance temperature profiles. However, in addition the formation of an intermediate state is observed during the melting of the ordered poly(U) to its random coil.  相似文献   

3.
In order to utilize phenolic compounds in unused biomass resources, the metabolic pathway of ferulic acid by way of a white-rot fungus, Schizophyllum commune, was investigated. Ferulic acid was immediately degraded, and the formation of 4-vinyl guaiacol was confirmed by GC-MS analysis. The metabolic test of ferulic acid and its degradation products indicated that S. commune converted ferulic acid into 4-vinyl guaiacol by decarboxylation. This was then oxidized to vanillin and vanillic acid. This result indicates that S. commune distinguished ferulic acid from lignins and metabolized it specifically.  相似文献   

4.
5.
6.
We investigated whether semidehydroascorbic acid was an intermediate in norepinephrine synthesis in chromaffin granules and in electron transfer across the chromaffin granule membrane. Semidehydroascorbic acid was measured in intact granules by electron spin resonance. In the presence of intragranular but not extragranular ascorbic acid, semidehydroascorbic acid was formed within granules in direct relationship to dopamine beta-monooxygenase activity. However, semidehydroascorbic acid was not generated when granules were incubated with epinephrine instead of the substrate dopamine, with dopamine beta-monooxygenase inhibitors, without oxygen, and when intragranular ascorbic acid was depleted. Experiments using the impermeant paramagnetic broadening agents [K3 [Cr(C2O4)3].3H2O] and Ni(en)3(NO3)2 provided further evidence that semidehydroascorbic acid was generated only within granules. We also investigated semidehydroascorbic acid formation in the presence of intragranular and extragranular ascorbic acid. Under these conditions, semidehydroascorbic acid was formed on both sides of the granule membrane, and formation was coupled to dopamine beta-monooxygenase activity. These data indicate that dopamine beta-monooxygenase is reduced by single electron transfer from intragranular ascorbic acid, that transmembrane electron transfer occurs by single electron transfer, and that transmembrane electron transfer is directly coupled to formation of intragranular semidehydroascorbic acid via dopamine beta-monooxygenase activity.  相似文献   

7.
8.
9.
10.
11.
12.
13.
The formation of ursodeoxycholic acid from chenodeoxycholic acid and the role of 7-ketolithocholic acid as an intermediate in this biotransformation were studied in vitro in fecal incubations as well as in vivo in the human colon. [24-14C]-Labeled 7-ketolithocholic and chenodeoxycholic acids were studied at various concentrations, and the biotransformation products were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry. There was rapid colonic conversion of 7-ketolithocholic acid to ursodeoxycholic acid and, to a lesser extent, to chenodeoxycholic acid. The reduction of 7-ketolithocholic to ursodeoxycholic acid proceeded significantly faster anaerobically and at acid pH than under aerobic and alkaline conditions. When chenodeoxycholic acid was incubated in vitro or instilled into the colon, various amounts of 7-ketolithocholic and ursodeoxycholic acids were formed. The formation of 7-ketolithocholic acid was favored by alkaline conditions. Isotope dilution studies, in which trace amounts of labeled 7-ketolithocholic acid were incubated with unlabeled chenodeoxycholic acid, indicate 7-ketolithocholic acid to be the major intermediate in the intestinal bacterial conversion of chenodeoxycholic to ursodeoxycholic acid.  相似文献   

14.
15.
Pyrimidine metabolism in microorganisms.   总被引:7,自引:0,他引:7       下载免费PDF全文
  相似文献   

16.
17.
18.
19.
Methods were developed for the determination of oligoalanine and other short-chain peptides and peptide analogs in ruminal fluid by using reverse-phase high-pressure liquid chromatography. Chromatographic analysis of the breakdown of (Ala)3 and (Ala)4 in ruminal fluid in vitro revealed that the predominant mechanism of hydrolysis was a dipeptidyl peptidase-like activity. Hydrolysis proceeded from the N terminal of the peptide chain; N-acetyl-(Ala)3 was broken down at 11% of the rate of breakdown of (Ala)3 or (Ala)3-p-nitroanilide. (Ala)2-p-nitroanilide was hydrolyzed most rapidly of the arylamide substrates tested, but fluorogenic 4-methoxy-2-naphthylamide (MNA) compounds were more convenient and potentially more versatile substrates than p-nitroanilides. Gly-Arg-MNA was the most rapidly hydrolyzed dipeptidyl peptidase substrate, suggesting that ruminal peptidase activity was predominantly of a type I specificity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号