首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural features of thermozymes   总被引:15,自引:0,他引:15  
Enzymes synthesized by thermophiles and hyperthermophiles are known as thermozymes. These enzymes are typically thermostable, or resistant to irreversible inactivation at high temperatures, and thermophilic, i.e. optimally active at elevated temperatures between 60 and 125 degrees C. Enzyme thermostability encompasses thermodynamic stability and kinetic stability. Thermodynamic stability is defined by the enzyme's free energy of stabilization (deltaG(stab)) and by its melting temperature (Tm). An enzyme's kinetic stability is often expressed as its halflife (t1/2) at defined temperature. DeltaG(stab) of thermophilic proteins is 5-20 kcal/mol higher than that of mesophilic proteins. The thermostability mechanisms for thermozymes are varied and depend on the enzyme; nevertheless, some common features can be identified as contributing to stability. These features include more interactions (i.e. hydrogen bonds, electrostatic interactions, hydrophobic interactions, disulfide bonds, metal binding) than in less stable enzymes and superior conformational structure (i.e. more rigid, higher packing efficiency, reduced entropy of unfolding, conformational strain release and stability of alpha-helix). Understanding of the stabilizing features will greatly facilitate reengineering of some of the mesozymes to more stable thermozymes.  相似文献   

2.
Fitter J  Herrmann R  Dencher NA  Blume A  Hauss T 《Biochemistry》2001,40(35):10723-10731
To elucidate how enzymes adapt to extreme environmental conditions, a comparative study with a thermostable alpha-amylase from Bacillus licheniformis (BLA) and its mesophilic homologue from Bacillus amyloliquefaciens (BAA) was performed. We measured conformational stability, catalytic activity, and conformational fluctuations on the picosecond time scale for both enzymes as a function of temperature. The objective of this study is to analyze how these properties are related to each other. BLA shows its maximal catalytic activity at about 90-95 degrees C and a strongly reduced activity (only 20% of the maximum) at room temperature. Although B. licheniformis itself is a mesophilic organism, BLA shows an activity profile typical for a thermophilic enzyme. In contrast to this, BAA exhibits its maximal activity at about 80 degrees C but with a level of about 60% activity at room temperature. In both cases the unfolding temperatures T(m) are only 6 degrees C (BAA, T(m) = 86 degrees C) and 10 degrees C (BLA, T(m) = 103 degrees C), respectively, higher than the temperatures for maximal activity. In contrast to many previous studies on other thermophilic-mesophilic pairs, in this study a higher structural flexibility of the thermostable BLA was measured as compared to the mesophilic BAA. The findings of this study neither indicate a proportionality between the observed dynamics and the catalytic activity nor support the idea of more "rigid" thermostable proteins, as often proposed in the concept of "corresponding states".  相似文献   

3.
4.
To characterize the thermal stability of 3-isopropylmalate dehydrogenase (IPMDH) from an extreme thermophile, Thermus thermophilus, urea-induced unfolding of the enzyme and of its mesophilic counterpart from Escherichia coli was investigated at various temperatures. The unfolding curves were analyzed with a three-state model for E.coli IPMDH and with a two-state model for T.thermophilus IPMDH, to obtain the free energy change DeltaG degrees of each unfolding process. Other thermodynamic parameters, enthalpy change DeltaH, entropy change DeltaS and heat capacity change DeltaC(p), were derived from the temperature dependence of DeltaG degrees. The main feature of the thermophilic enzyme was its lower dependence of DeltaG degrees on temperature resulting from a low DeltaC(p). The thermophilic IPMDH had a significantly lower DeltaC(p), 1.73 kcal/mol.K, than that of E.coli IPMDH (20.7 kcal/mol.K). The low DeltaC(p) of T.thermophilus IPMDH could not be predicted from its change in solvent-accessible surface area DeltaASA. The results suggested that there is a large structural difference between the unfolded state of T.thermophilus and that of E.coli IPMDH. Another responsible factor for the higher thermal stability of T.thermophilus IPMDH was the increase in the most stable temperature T(s). The DeltaG degrees maximum of T.thermophilus IPMDH was much smaller than that of E.coli IPMDH. The present results clearly demonstrated that a higher melting temperature T(m) is not necessarily accompanied by a higher DeltaG degrees maximum.  相似文献   

5.
No general strategy for thermostability has been yet established, because the extra stability of thermophiles appears to be the sum of different cumulative stabilizing interactions. In addition, the increase of conformational rigidity observed in many thermophilic proteins, which in some cases disappears when mesophilic and thermophilic proteins are compared at their respective physiological temperatures, suggests that evolutionary adaptation tends to maintain corresponding states with respect to conformational flexibility. In this study, we accomplished a structural analysis of the K18G/R82E Alicyclobacillus acidocaldarius thioredoxin (BacTrx) mutant, which has reduced heat resistance with respect to the thermostable wild-type. Furthermore, we have also achieved a detailed study, carried out at 25, 45, and 65 degrees C, of the backbone dynamics of both the BacTrx and its K18G/R82E mutant. Our findings clearly indicate that the insertion of the two mutations causes a loss of energetically favorable long-range interactions and renders the secondary structure elements of the double mutants more similar to those of the mesophilic Escherichia coli thioredoxin. Moreover, protein dynamics analysis shows that at room temperature the BacTrx, as well as the double mutant, are globally as rigid as the mesophilic thioredoxins; differently, at 65 degrees C, which is in the optimal growth temperature range of A. acidocaldarius, the wild-type retains its rigidity while the double mutant is characterized by a large increase of the amplitude of the internal motions. Finally, our research interestingly shows that fast motions on the pico- to nanosecond time scale are not detrimental to protein stability and provide an entropic stabilization of the native state. This study further confirms that protein thermostability is reached through diverse stabilizing interactions, which have the key role to maintain the structural folding stable and functional at the working temperature.  相似文献   

6.
Thermal stability was measured for variants of cytochrome c-551 (PA c-551) from a mesophile, Pseudomonas aeruginosa, and a thermophilic counterpart, Hydrogenobacter thermophilus cytochrome c-552 (HT c-552), by differential scanning calorimetry (DSC) at pH 3.6. The mutated residues in PA c-551, selected with reference to the corresponding residues in HT c-552, were located in three spatially separated regions: region I, Phe7 to Ala/Val13 to Met; region II, Glu34 to Tyr/Phe43 to Tyr; and region III, Val78 to Ile. The thermodynamic parameters determined indicated that the mutations in regions I and III caused enhanced stability through not only enthalpic but also entropic contributions, which reflected improved packing of the side chains. Meanwhile, the mutated region II made enthalpic contributions to the stability through electrostatic interactions. The obtained differences in the Gibbs free energy changes of unfolding [Delta(DeltaG)] showed that the three regions contributed to the overall stability in an additive manner. HT c-552 had the smallest heat capacity change (DeltaC(P)), resulting in higher DeltaG values over a wide temperature range (0-100 degrees C), compared to the PA c-551 variants; this contributed to the highest stability of HT c-552. Our DSC measurement results, in conjunction with mutagenesis and structural studies on the homologous mesophilic and thermophilic cytochromes c, provided an extended thermodynamic view of protein stabilization.  相似文献   

7.
3-Phosphoglycerate kinases from yeast and the extreme thermophilic bacterium Thermus thermophilus HB8 have been used as models for investigating the relationship between stability, dynamics and activity. It was found that while at a given temperature the thermophilic protein is more stable, its conformational dynamics as measured by the ability of acrylamide to quench the fluorescence of a buried tryptophan as well as its specific activity, are both lower than for the mesophilic protein. As the temperature is increased, the thermodynamic stability of the thermophilic protein approaches that of the mesophilic protein at its working temperature. Its conformational dynamics and specific activity however were both shown to increase, until at the physiologically operational temperature, they become similar to those of the mesophilic enzyme at its operational temperature. These results confirm the proposal that a direct relationship and balance holds between thermodynamic stability, dynamics and specific activity in globular proteins. They demonstrate also the constraining effect of increased stability upon conformational dynamics and enzyme activity.  相似文献   

8.
Enzymes from thermophiles are poorly active at temperatures at which their mesophilic homologs exhibit high activity and attain corresponding active states at high temperatures. In this study, comparative molecular dynamics (MD) simulations, supplemented by normal mode analysis, have been performed on an enzyme Adenylosuccinate synthetase (AdSS) from E. coli (mesophilic) and P. horikoshii (thermophilic) systems to understand the effects of loop dynamics on thermal stability of AdSS. In mesophilic AdSS, both ligand binding and catalysis are facilitated through the coordinated movement of five loops on the protein. The simulation results suggest that thermophilic P. horikoshii preserves structure and catalytic function at high temperatures by using the movement of only a subset of loops (two out of five) for ligand binding and catalysis unlike its mesophilic counterpart in E. coli. The pre-arrangement of the catalytic residues in P. horikoshii is well-preserved and salt bridges remain stable at high temperature (363K). The simulations suggest a general mechanism (including pre-arrangement of catalytic residues, increased polar residue content, stable salt bridges, increased rigidity, and fewer loop movements) used by thermophilic enzymes to preserve structure and be catalytically active at elevated temperatures.  相似文献   

9.
Ragone R 《Proteins》2004,54(2):323-332
This article shows that the stability profiles of thermophilic proteins are significantly displaced toward higher temperatures as compared to those of mesophilic proteins. A similar trend characterizes the aqueous transfer of N-alkyl amides. In fact, as a general feature of transfer processes, liquid dissolution profiles are centered at temperatures higher than those of solid ones. This behavior is governed by packing contributions. A partition of the unfolding thermodynamics based on the analysis of phenomenological temperatures common to dissolution and unfolding phenomena provides a clue to understanding the mechanism of thermal stabilization. In fact, the position of stability profiles along the temperature axis does not appear to depend on solvation of internal residues. Instead, it is notably affected by solidlike components, whose progressive decrease appears to drive the heat denaturation temperature increase of most thermostable proteins. As a corollary, it is shown that there are actually two limiting mechanisms of thermal stabilization.  相似文献   

10.
S Kumar  C J Tsai  R Nussinov 《Biochemistry》2001,40(47):14152-14165
Here, we analyze the thermodynamic parameters and their correlations in families containing homologous thermophilic and mesophilic proteins which show reversible two-state folding <--> unfolding transitions between the native and the denatured states. For the proteins in these families, the melting temperatures correlate with the maximal protein stability change (between the native and the denatured states) as well as with the enthalpic and entropic changes at the melting temperature. In contrast, the heat capacity change is uncorrelated with the melting temperature. These and additional results illustrate that higher melting temperatures are largely obtained via an upshift and broadening of the protein stability curves. Both thermophilic and mesophilic proteins are maximally stable around room temperature. However, the maximal stabilities of thermophilic proteins are considerably greater than those of their mesophilic homologues. At the living temperatures of their respective source organisms, homologous thermophilic and mesophilic proteins have similar stabilities. The protein stability at the living temperature of the source organism does not correlate with the living temperature of the protein. We tie thermodynamic observations to microscopics via the hydrophobic effect and a two-state model of the water structure. We conclude that, to achieve higher stability and greater resistance to high and low temperatures, specific interactions, particularly electrostatic, should be engineered into the protein. The effect of these specific interactions is largely reflected in an increased enthalpy change at the melting temperature.  相似文献   

11.
The dynamical basis underlying the increased thermal stability of thermophilic proteins remains uncertain. Here, we challenge the new paradigm established by neutron scattering experiments in solution, in which the adaptation of thermophilic proteins to high temperatures lies in the lower sensitivity of their flexibility to temperature changes. By means of a combination of molecular dynamics and Brownian dynamics simulations, we report a reinterpretation of those experiments and show evidence that under crowding conditions, such as in vivo, thermophilic and homolog mesophilic proteins have diffusional properties with different thermal behavior.  相似文献   

12.
Comparison of the conformational stability of an O(6)-methylguanine-DNA methyltransferase (MGMT) from the hyperthermophilic archaeon Thermococcus kodakaraensis strain KOD1 (Tk-MGMT), and its mesophilic counterpart C-terminal Ada protein from Escherichia coli (Ec-AdaC) was performed in order to obtain information about the relationship between thermal stability and other factors, such as thermodynamic parameters, thermodynamic stability and other unfolding conditions. Tk-MGMT unfolded at Tm = 98.6 degrees C, which was 54.8 degrees C higher than the unfolding temperature of Ec-AdaC. The maximum free energy (DeltaG(max)) of the proteins were different; the value of Tk-MGMT (42.9 kJ.mol-1 at 29.5 degrees C) was 2.6 times higher than that of Ec-AdaC (16.6 kJ.mol-1 at 7.4 degrees C). The high conformational stability of Tk-MGMT was attributed to a 1.6-fold higher enthalpy value than that of Ec-AdaC. In addition, the DeltaG(max) temperature of Tk-MGMT was considerably higher (by 22.1 degrees C). The apparent heat capacity of denaturation (DeltaC(p)) of Tk-MGMT was 0.7-fold lower than that of Ec-AdaC. These three synergistic effects, increasing DeltaGmax, shifted DeltaG vs. temperature curve, and low DeltaC(p), give Tk-MGMT its thermal stability. Unfolding profiles of the two proteins, tested with four alcohols and three denaturants, showed that Tk-MGMT possessed higher stability than Ec-AdaC in all conditions studied. These results indicate that the high stability of Tk-MGMT gives resistance to chemical unfolding, in addition to thermal unfolding.  相似文献   

13.
The structural stability of the protein, phycocyanin isolated from two strains of cyanophyta, Synechococcus lividus (thermophile) and Phormidium luridum (mesophile), are investigated by comparative thermal and denaturant unfolding, using differential scanning calorimetry, visible absorption spectrophotometry, and circular dichroism. The thermophilic protein exhibits a much higher temperature and enthalpy of unfolding from the native to the denatured state. The concentration of urea at half-completion of thermal unfolding is essentially the same between the thermophilic and mesophilic proteins; in contrast, the corresponding temperature and the enthalpy of thermal unfolding are much higher for the thermophilic protein. In addition, the concentration of urea at which the non-thermal (denaturant) unfolding of protein is half-completed, as detected by either circular dichroism or absorption spectroscopy, is significantly higher in the thermophilic protein, while the apparent free energy of unfolding only shows a moderate difference between the two proteins. The distinct differences in the enthalpy of thermal unfolding and the free energy of denaturant unfolding are interpreted in terms of a significant entropy change associated with the unfolding of these proteins. This entropy contribution is much higher in the thermophilic protein, and may be derived from its more rigid overall structure that possesses higher internal hydrophobicity and stronger internal packing.  相似文献   

14.
Molecular dynamics simulations were performed for investigating the thermal stability of the extremely thermophilic Thermoanaerobacter tengcongensis ribose binding protein (tteRBP) and the mesophilic homologous Escherichia coli ribose binding protein (ecRBP). The simulations for the two proteins were carried out under the room temperature (300?K) and the optimal activity temperature (tteRBP 375?K and ecRBP 329?K), respectively. The comparative analyses of the trajectories show that the two proteins have stable overall structures at the two temperatures; further analyses indicate that they both have strong side-chain interactions and different backbone flexibilities at the different temperatures. The tteRBP 375?K and ecRBP 329?K have stronger internal motion and higher flexibility than tteRBP 300?K and ecRBP 300?K, respectively, it is noted that the flexibility of tteRBP is much higher than that of ecRBP at the two temperatures. Therefore, tteRBP 375?K can adapt to high temperature due to its higher flexibility of backbone. Combining with the researches by Cuneo et al., it is concluded that the side-chain interactions and flexibility of backbone are both the key factors to maintain thermal stability of the two proteins.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:22  相似文献   

15.
Bhatt AN  Prakash K  Subramanya HS  Bhakuni V 《Biochemistry》2002,41(40):12115-12123
To determine how much information can be transferred from folding and unfolding studies of one protein to another member of the same family or between the mesophilic and thermophilic homologues of a protein, we have characterized the equilibrium unfolding process of the dimeric enzyme serine hydroxymethyltransferase (SHMT) from two sources, Bacillus subtilis (bsSHMT) and Bacillus stearothermophilus (bstSHMT). Although the sequences of the two enzymes are highly identical ( approximately 77%) and homologous (89%), bstSHMT shows a significantly higher stability against both thermal and urea denaturation than bsSHMT. The GdmCl-induced unfolding of bsSHMT was found to be a two-step process with dissociation of the native dimer, resulting in stabilization of a monomeric species, followed by the unfolding of the monomeric species. A similar unfolding pathway has been reported for Escherichia coli aspartate aminotransferase, a member of the type I fold family of PLP binding enzymes such as SHMT, the sequence of which is only slightly identical ( approximately 14%) with that of SHMT. In contrast, for bstSHMT, a highly cooperative unfolding without stabilization of any monomeric intermediate was observed. These studies suggest that mesophilic proteins of the same structural family even sharing a low level of sequence identity may follow a common unfolding mechanism, whereas the mesophilic and thermophilic homologues of the same protein despite having a high degree of sequence identity may follow significantly different unfolding mechanisms.  相似文献   

16.
We attempt to understand the origin of enhanced stability in thermophilic proteins by analyzing thermodynamic data for 116 proteins, the largest data set achieved to date. We compute changes in entropy and enthalpy at the convergence temperature where different driving forces are maximally decoupled, in contrast to the majority of previous studies that were performed at the melting temperature. We find, on average, that the gain in enthalpy upon folding is lower in thermophiles than in mesophiles, whereas the loss in entropy upon folding is higher in mesophiles than in thermophiles. This implies that entropic stabilization may be responsible for the high melting temperature, and hints at residual structure or compactness of the denatured state in thermophiles. We find a similar trend by analyzing a homologous set of proteins classified based only on the optimum growth temperature of the organisms from which they were extracted. We find that the folding free energy at the temperature of maximal stability is significantly more favorable in thermophiles than in mesophiles, whereas the maximal stability temperature itself is similar between these two classes. Furthermore, we extend the thermodynamic analysis to model the entire proteome. The results explain the high optimal growth temperature in thermophilic organisms and are in excellent quantitative agreement with full thermal growth rate data obtained in a dozen thermophilic and mesophilic organisms.  相似文献   

17.
18.
We studied a pair of homologous thermophilic and mesophilic ribonuclease HI enzymes by molecular dynamics simulations. Each protein was subjected to three 5 ns simulations in explicit water at both 310 K and 340 K. The thermophilic enzyme showed larger overall positional fluctuations at both temperatures, while only the mesophilic enzyme at the higher temperature showed significant instability. When the temperature is changed, the relative flexibility of different local segments on the two proteins changed differently. Principal component analysis showed that the simulations of the two proteins explored largely overlapping regions in the conformational space. However, at 340 K, the collective structure variations of the thermophilic protein are different from those of the mesophilic protein. Our results, although not in accordance with the view that hyperthermostability of proteins may originate from their conformational rigidity, are consistent with several recent experimental and simulation studies which showed that thermophilic proteins may be conformationally more flexible than their mesophilic counterparts. The decorrelation between conformational rigidity and hyperthermostability may be attributed to the temperature dependence and long range nature of electrostatic interactions that play more important roles in the structural stability of thermophilic proteins.  相似文献   

19.
Living organisms are found in the most unexpected places, including deep-sea vents at 100 degrees C and several hundred bars pressure, in hot springs. Needless to say, the proteins found in thermophilic species are much more stable than their mesophilic counterparts. There are no obvious reasons to say that one would be more stable than others. Even examination of the amino acids and comparison of structural features of thermophiles with mesophilies cannot bring satisfactory explanation for the thermal stability of such proteins. In order to bring out the hidden information behind the thermal stabilization of such proteins in terms of energy factors and their combinations, analysis were made on good resolution structures of thermophilic and their mesophilic homologous from 23 different families. From the structural coordinates, free energy contributions due to hydrophobic, electrostatic, hydrogen bonding, disulfide bonding and van der Waals interactions are computed. In this analysis, a vast majority of thermophilic proteins adopt slightly lower free energy contribution in each energy terms than its mesophilic counterparts. The major observation noted from this study is the lower hydrophobic free energy contribution due to carbon atoms and main-chain nitrogen atoms in all the thermophilic proteins. The possible combination of different free energy terms shows majority of the thermophilic proteins have lower free energy strategy than their mesophilic homologous. The derived results show that the hydrophobic free energy due to carbon and nitrogen atoms and such combinations of free energy components play a vital role in the thermostablisation of such proteins.  相似文献   

20.
Understanding and exploiting the relationship between microscopic structure and macroscopic stability is important for developing strategies to improve protein stability at high temperatures. The thermostability of proteins has been repeatedly linked to an enhanced structural rigidity of the folded native state. In the current study, the rigidity of protein structures from mesophilic and thermophilic organisms along a thermal unfolding trajectory is directly probed. In order to perform this, protein structures were modeled as constraint networks, and the rigidity in these networks was quantified using the Floppy Inclusion and Rigid Substructure Topography (FIRST) method. During the thermal unfolding, a phase transition was observed that defines the rigidity percolation threshold and corresponds to the folded‐unfolded transition in protein folding. Using concepts from percolation theory and network science, a higher phase transition temperature was observed for ca. two‐thirds of the proteins from thermophilic organisms compared to their mesophilic counterparts, when applied to a data set of 20 pairs of homologues. From both the analysis of the microstructure of the constraint networks and monitoring the macroscopic behavior during the thermal unfolding, direct evidence was found for the “corresponding states” concept, which states that mesophilic and thermophilic enzymes are in corresponding states of similar flexibility at their respective optimal temperature. Finally, the current approach facilitated the identification of structural features from which a destabilization of the structure originates upon thermal unfolding. These predictions show a good agreement with the experimental data. Therefore, the information might be exploited in data‐driven protein engineering by pointing to residues that should be varied to obtain a protein with higher thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号