首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of coumarin, 4-hydroxycoumarin, coumarin-3-carboxylic acid and acenocoumarol on the active transport of D-galactose and the passive diffusion of arabinose by intestinal sacs was studied. All these substances, when added to the mucosal medium of incubation at concentrations from 10(-4) to 10(-3) M, inhibit the active transport of D-galactose and increase the diffusion of arabinose. Oxygen uptake by the intestinal tissue is only inhibited by coumarin-3-carboxylic acid. The results suggest that the effects obtained are probably due to an alteration in intestinal permeability, to inhibition of cell metabolism and to molecular size.  相似文献   

2.
The nanoparticulate carrier systems as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have gained interest for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Therefore in this study, SLNs and NLCs loaded fluconazole (FLZ) were prepared by solvent diffusion method in an aqueous system and characterized for different parameters. In addition, antifungal activity was carried out on experimentally induced cutaneous candidiasis in immunosuppressed albino rats. The results showed that SLNs and NLCs represent the respective mean particle sizes of approx. 178 and 134 nm with encapsulation efficiency of 75.7±4.94% and 81.4±3.89%, respectively. The skin-retention studies of FLZ from in vitro and in vivo experiments revealed significantly higher accumulation of drug in the case of NLCs formulation. The in vivo cumulative amount of FLZ retention from NLCs was more than 5-fold that of the plain solution, while it was 3.3-fold more in the case of an equivalent-dose application in the form of SLNs at 12h after administration. The antifungal study also confirmed the maximum therapeutic efficacy of NLCs, as the lowest number of cfu/ml was recorded. It can be concluded from this study that NLCs provide a good skin targeting effect and may be a promising carrier for topical delivery of FLZ offering the sustained release and maintain the localized effect, resulting in an effective treatment of a life-threatening cutaneous fungal infection.  相似文献   

3.
Certain coumarin alpha-methylene-gamma-butyrolactones were synthesized and evaluated for antiproliferative and vasorelaxing activities. These compounds were synthesized via alkylation of hydroxycoumarins 2a-f followed by oxidation and the Reformatsky-type condensation. The results of this study are as follows (1) for the vasorelaxing activity, coumarin-7-yl alpha-methylene-gamma-butyrolactone 6d, with an IC50 value of 9.4 microM against pig coronary arterial contraction induced by KCl, is a more active vasorelaxant than its coumarin-4-yl counterpart 6a and its gamma-methyl congener 1. A methyl group substituted at C-4 of the coumarin-7-yl moiety reduced the vasorelaxing effect (6d vs 6e) while the 3,4,8-trimethyl derivative 6f was inactive. (2) For the antiproliferative activity, coumarin-4-yl alpha-methylene-gamma-butyrolactone 6a, which exhibited the most potent antiproliferative activity on the growth of MCF7, NCI-H460, and SF-268 with IC50 values of 6.97, 14.68, and 8.36 microM, respectively, is more cytotoxic than its coumarin-7-yl counterpart 6d and the 6,7-dimethyl derivative 6b. For the coumarin-7-yl derivatives, 6d is more active than its gamma-methyl congener 1, indicating that substitution at the gamma-position decreased cytotoxicity.  相似文献   

4.
Context: Avanafil (AVA) is used in the treatment of erectile dysfunction, but is reported for its poor aqueous solubility. Solid lipid nanoparticles (SLNs) are lipid carriers that can greatly enhance drug solubility and bioavailability.

Objective: This work was aimed to formulate and optimize AVA SLNs with subsequent loading into hydrogel films for AVA transdermal delivery.

Materials and methods: AVA SLNs were prepared utilizing homogenization followed by ultra-sonication technique. The prepared SLNs were characterized for particle size, charge, surface morphology and drug content. The optimized SLNs formulation was incorporated into transdermal films prepared using HPMC and chitosan. Hydrogel films were evaluated for ex-vivo rat skin permeation using automated Franz diffusion cells. The permeation parameters and the release mechanism were evaluated. The transdermal permeation of the prepared AVA SLNs through the skin layers was studied using confocal laser scanning microscope.

Results: Lipid concentration and % of oil in lipid had a pronounced effect on particle size while, entrapment efficiency was significantly affected by lipid concentration and % of cholesterol. The optimized AVA SLNs showed particle size and entrapment efficiency of 86?nm and 85.01%, respectively. TEM images revealed spherecity of the particles. High permeation parameters were observed from HPMC films loaded with AVA SLNs. The release data were in favor of Higuchi diffusion model. The prepared AVA SLNs were able to penetrate deeper in skin layers.

Conclusion: HPMC transdermal film-loaded AVA SLNs is an effective and alternative to per-oral drug administration.  相似文献   

5.
In this study, solid lipid nanoparticles (SLNs) were successfully prepared by an ultrasonic and high-pressure homogenization method to improve the oral bioavailability of the poorly water-soluble drug cryptotanshinone (CTS). The particle size and distribution, drug loading capacity, drug entrapment efficiency, zeta potential, and long-term physical stability of the SLNs were characterized in detail. A pharmacokinetic study was conducted in rats after oral administration of CTS in different SLNs, and it was found that the relative bioavailability of CTS in the SLNs was significantly increased compared with that of a CTS-suspension. The incorporation of CTS in SLNs also markedly changes the metabolism behavior of CTS to tanshinone IIA. These results indicate that CTS absorption is enhanced significantly by employing SLN formulations, and SLNs represent a powerful approach for improving the oral absorption of poorly soluble drugs.  相似文献   

6.
Physics of actin networks. I. Rheology of semi-dilute F-actin.   总被引:1,自引:0,他引:1       下载免费PDF全文
K S Zaner 《Biophysical journal》1995,68(3):1019-1026
  相似文献   

7.
The transduction of signals depends on the translocation of signaling molecules to specific targets. Undirected diffusion processes play a key role in the bridging of spaces between different cellular compartments. The diffusion of the molecules is, in turn, governed by the intracellular architecture. Molecular crowding and the cytoskeleton decrease macroscopic diffusion. This article shows the use of a stochastic simulation method to study the effects of the cytoskeleton structure on the mobility of macromolecules. Brownian dynamics and single particle tracking were used to simulate the diffusion process of individual molecules through a model cytoskeleton. The resulting average effective diffusion is in line with data obtained in the in vitro and in vivo experiments. It shows that the cytoskeleton structure strongly influences the diffusion of macromolecules. The simulation method used also allows the inclusion of reactions in order to model complete signaling pathways in their spatio-temporal dynamics, taking into account the effects of the cellular architecture.  相似文献   

8.
Fang Y  Ferrie AM  Li G 《FEBS letters》2005,579(19):4175-4180
This paper reported the use of resonant waveguide grating biosensors for studying the cytoskeleton structure in cells. This was achieved by measuring the changes in mass within the bottom portion of cells upon exposure to saponin in the absence and presence of cytoskeleton modulators. Treatment of Chinese hamster ovary cells with saponin led to a dose-dependent and dynamic mass changes. When a higher concentration of saponin (> 60 microg/ml) was used, a net loss in mass was observed. This is probably resulted from the diffusion of soluble intracellular materials away from the bottom portion of cells after pore formation in the cell plasma membranes by saponin. The pretreatment of cells with actin disruption agents, cytochalasin B and latrunculin A, led to significantly increased loss in cell mass induced by either 75 or 125 microg/ml saponin. These results suggested that optical biosensors provide an attractive means to study the cytoskeleton structure and screen modulators that affect the cytoskeleton structure.  相似文献   

9.
Paromomycin has been shown to have anti-leishmaniasis activity; however, its clinical use is restricted to some content owing to its poor skin penetration. To identify innovative methods of dermal administration of paromomycin and controlling the release delivery system, paromomycin was loaded into the solid lipid media as nanoparticles. Type of the method; microemulsion or solvent diffusion, the type of lipid; cetyl palmitate or stearic acid, were comparatively investigated on the average diameter, size distribution and entrapment efficiency of the lipid nanoparticles to maximize entrapment efficiency, reduce the particle size and its distribution. Three quantitative factors, paromomycin content, weight fraction of Tween 80 and drug to lipid ratio, were also investigated at two levels for Solid Lipid Nanoparticles (SLNs) formulation in a fractional factorial design. The results indicated that microemulsion was the most efficient method and stearic acid was the preferred lipid for SLNs formulation. The average size of the particles was reduced to 299.08 nm and the entrapment efficiency was enhanced from immediate release to 24 h.  相似文献   

10.
The proposed function of intermediate filaments is to provide a cell type-specific structural framework that maintains cell shape and organelle distribution and mediates signal transduction through its connections with the plasma membrane and the nucleus. Vimentin is the intermediate filament protein expressed in B lymphocytes. Immunocytochemical analysis of the high salt-stable cytoskeletons from B cells stimulated with anti-Ig revealed an increased accumulation of vimentin in the cytoskeleton compared to nontreated controls. This increased accumulation of vimentin in the cytoskeleton was manifested by the organization of vimentin into extensive filamentous arrays (EFA) as viewed in the fluorescent microscope. In contrast to the effects of anti-Ig, activation of B cells with LPS did not induce the organization of vimentin into EFA. This suggested that signals unique to anti-Ig directed EFA formation. Immunocytochemical results were verified by biochemical analysis showing that vimentin was more abundant in isolated cytoskeletons from anti-Ig activated B cells, than cytoskeletons isolated from LPS-activated B cells. These observations established a relationship between increased content of vimentin in the cytoskeleton and the formation of EFA. By testing a wide variety of activating agents, we were able to correlate increased vimentin expression in the cytoskeleton to activating agents that cross-link membrane Ig. It appeared that treatment of B cells with LPS prohibited the induction of EFA by anti-Ig because cotreatment with both anti-Ig and LPS resulted in decreased vimentin accumulation in the cytoskeleton to a level less than that in resting cells. The significance of these results with regard to B cell biology is discussed.  相似文献   

11.
Several experiments on permeabilized heart muscle fibers suggest the existence of diffusion restrictions grouping mitochondria and surrounding ATPases. The specific causes of these restrictions are not known, but intracellular structures are speculated to act as diffusion barriers. In this work, we assume that diffusion restrictions are induced by sarcoplasmic reticulum (SR), cytoskeleton proteins localized near SR, and crowding of cytosolic proteins. The aim of this work was to test whether such localization of diffusion restrictions would be consistent with the available experimental data and evaluate the extent of the restrictions. For that, a three-dimensional finite-element model was composed with the geometry based on mitochondrial and SR structural organization. Diffusion restrictions induced by SR and cytoskeleton proteins were varied with other model parameters to fit the set of experimental data obtained on permeabilized rat heart muscle fibers. There are many sets of model parameters that were able to reproduce all experiments considered in this work. However, in all the sets, <5-6% of the surface formed by SR and associated cytoskeleton proteins is permeable to metabolites. Such a low level of permeability indicates that the proteins should play a dominant part in formation of the diffusion restrictions.  相似文献   

12.
The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.  相似文献   

13.
14.
A synthetic coumarin, 7-amino-3-phenyl coumarin (coumarin-10), was used to study the uptake of ingested xenobiotics into hemolymph. Larvae were forcefed coumarin-10 in peanut oil, and hemolymph was extracted and analyzed by fluorescence spectroscopy. Coumarin-10 entered hemolymph within 5 min, reaching a steady state of concentration within 1 h. Assayed 2 h after feeding, hemolymph titers of 1–5 ng/μl were proportional to log dose between 10 and 100 ng/mg body weight; hemolymph did not reach saturation. Fluorescence spectra of hemolymph in saline revealed that energy was readily transferred from hydrophobic residues of hemolymph proteins to coumarin-10. Ultracentrifugal density gradients revealed that 94% of absorbed coumarin-10 was bound to sedimenting proteins while 6% bound to lipophorin. Native polyacrylamide gel electrophoresis (N-PAGE) on minigels identified two major proteins responsible for binding. Though readily separated by native electrophoresis, these proteins were not fully separable by HPLC using a wide variety of columns. Gel permeation-HPLC of the sedimenting proteins from hemolymph revealed a single major peak of 480,000 Mr. When upper and lower electrophoretic bands were isolated by preparative N-PAGE, the upper band (band I) yielded subunits of 75,000 and 71,000 Mr, while the lower band (band II) yielded only one size subunit of 75,000 Mr on denaturing (SDS) PAGE. The fluorescent products bound by sedimenting proteins were identified by thin-layer chromatography and scanning fluorescence densitometry as coumarin-10 (80% of total) and a polar metabolite (20%). In addition, lipophorin-containing fractions contained an apolar metabolite (3% of total fluorescence). In vitro binding studies utilizing fluorescent energy transfer demonstrated saturation binding with a KD of 1.5 μM.  相似文献   

15.
16.
The diffusion of intracellular fluid and solutes is mainly limited by the density and the geometry of crossbridges between cytoskeletal polymers mediating the formation of an integrated cytoplasmic scaffold. Evidence for specific relationships between water and cytoskeletal polymers arises from the effect of heavy water on their polymerization process in vitro and on the cytoskeleton of living cells. The hydration of cytoskeletal subunits is modified through polymerization, a mechanism which may be involved in the direct contribution of the cytoskeleton to the osmotic properties of cells together with changes of hydration of polymers within networks. The dynamic properties of the hydration layer of cytoskeletal polymers may reflect the repetitive distribution of the surface charges of subunits within the polymer lattice, thus inducing a local and long range ordering of the diffusion flows of water and solutes inside polymer networks. The interactions between subunits in protofilaments and between protofilaments determine the specific viscoelastic properties of each type of polymer, regulated by associated proteins, and the mechanical properties of the cell through the formation of bundles and gels. Individual polymers are interconnected into dynamic networks through crossbridging by structural associated proteins and molecular motors, the activity of which involves cooperative interactions with the polymer lattice and likely the occurence of coordinated modifications of the hydration layer of the polymer surface. The cytoskeletal polymers are polyelectrolytes which constitute a large intracellular surface of condensed anionic charges and form a buffering structure for the sequestration of cations involved in the regulation of intracellular events. This property allows also the association of cytoplasmic enzymes and multimolecular complexes with the cytoskeleton, facilitating metabolic channelling and the localization of these complexes in specific subdomains of the cytoplasm. The consequences of interactions between membranes and the cytoskeleton in all cellular compartments range from the local immobilization and clustering of lipids and membrane proteins to the regulation of water and ion flows by the association of cytoskeletal subunits or polymers with transmembrane channels. The possibility that the polyelectrolyte properties of the cytoskeletal polymers contribute to the modulation of membrane potentials supports the hypothesis of a direct involvement of the cytoskeleton in intercellular communications.  相似文献   

17.
Xenopus oocyte organization largely depends upon the cytoskeleton distribution, which is dynamically regulated during oogenesis. An actin-based cytoskeleton is present in the cortex starting from stage 1. At stages 4-6, a complex and polarized cytoskeleton network forms in the cytoplasm. In this paper, we studied the distribution of spectrin, a molecule that has binding sites for several cytoskeletal proteins and is responsible for the determination of regionalized membrane territories. The localization of alpha-spectrin mRNA was analyzed during Xenopus oogenesis by in situ hybridization on both whole mount and sections, utilizing a cDNA probe encoding a portion of Xenopus alpha-spectrin. Furthermore, an antibody against mammalian alpha-spectrin was used to localize the protein. Our results showed a stage-dependent mRNA localization and suggested that spectrin may participate in the formation of specific domains in oocytes at stages 1 and 2 and 4-6. Mol. Reprod. Dev. 55:229-239, 2000.  相似文献   

18.
The sodium-hydrogen exchange regulatory factor 1 (NHERF-1/EBP50) interacts with the C terminus of several G protein-coupled receptors (GPCRs). We examined the role of NHERF-1 and the cytoskeleton on the distribution, dynamics, and trafficking of the beta(2)-adrenergic receptor (beta(2)AR; a type A receptor), the parathyroid hormone receptor (PTH1R; type B), and the calcium-sensing receptor (CaSR; type C) using fluorescence recovery after photobleaching, total internal reflection fluorescence, and image correlation spectroscopy. beta(2)AR bundles were observed only in cells that expressed NHERF-1, whereas the PTH1R was localized to bundles that parallel stress fibers independently of NHERF-1. The CaSR was never observed in bundles. NHERF-1 reduced the diffusion of the beta(2)AR and the PTH1R. The addition of ligand increased the diffusion coefficient and the mobile fraction of the PTH1R. Isoproterenol decreased the immobile fraction but did not affect the diffusion coefficient of the beta(2)AR. The diffusion of the CaSR was unaffected by NHERF-1 or the addition of calcium. NHERF-1 reduced the rate of ligand-induced internalization of the PTH1R. This phenomenon was accompanied by a reduction of the rate of arrestin binding to PTH1R in ligand-exposed cells. We conclude that some GPCRs, such as the beta(2)AR, are attached to the cytoskeleton primarily via the binding of NHERF-1. Others, such as the PTH1R, bind the cytoskeleton via several interacting proteins, one of which is NHERF-1. Finally, receptors such as the CaSR do not interact with the cytoskeleton in any significant manner. These interactions, or the lack thereof, govern the dynamics and trafficking of the receptor.  相似文献   

19.
To successfully prepare the diclofenac sodium (DS)-loaded solid lipid nanoparticles (SLNs), phospholipid complexes (PCs) technology was applied here to improve the liposolubility of DS. Solid lipid nanoparticles (SLNs) loaded with phospholipid complexes (PCs) were prepared by the modified emulsion/solvent evaporation method. DS could be solubilized effectively in the organic solvents with the existence of phospholipid and apparent partition coefficient of DS in PCs increased significantly. X-ray diffraction analysis suggested that DS in PCs was either molecularly dispersed or in an amorphous form. However, no significant difference was observed between the Fourier transform infrared spectroscopy (FT-IR) spectra of physical mixture and that of PCs. Particles with small sizes, narrow polydispersity indexes and high entrapment efficiencies could be obtained with the addition of PCs. Furthermore, according to the transmission electron microscopy, a core-shell structure was likely to be formed. The presence of PCs caused the change of zeta potential and retarded the drug release of SLNs, which indicated that phospholipid formed multilayers around the solid lipid core of SLNs. Both FT-IR and differential scanning calorimetry analysis also illustrated that some weak interactions between DS and lipid materials might take place during the preparation of SLNs. In conclusion, the model hydrophilic drug-DS can be formulated into the SLNs with the help of PCs.  相似文献   

20.
We calculate the influence of a flexible network of long-chain proteins, which is anchored to a fluid membrane, on protein diffusion in this membrane. This is a model for the cortical cytoskeleton and the lipid bilayer of the red blood cell, which we apply to predict the influence of the cytoskeleton on the diffusion coefficient of a mobile band 3 protein. Using the pressure field that the cytoskeleton exerts on the membrane, from the steric repulsion between the diffusing protein and the cytoskeletal filaments, we define a potential landscape for the diffusion within the bilayer. We study the changes to the diffusion coefficient on removal of one type of anchor proteins, e.g., in several hemolytic anemias, as well as for isotropic and anisotropic stretching of the cytoskeleton. We predict an overall increase of the diffusion for a smaller number of anchor proteins and increased diffusion for anisotropic stretching in the direction of the stretch, because of the decrease in the spatial frequency as well as in the height of the potential barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号