首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review focuses on the blue light responses in bacteria and on the bacterial proteins which have been demonstrated to function as blue light receptors. Results of the previous years reveal that different types of photoreceptors have already evolved in prokaryotes. However, for most of these photoreceptors the exact biological functions and the mechanisms of signaling to downstream components are poorly understood.  相似文献   

2.
In nature, sensory photoreceptors underlie diverse spatiotemporally precise and generally reversible biological responses to light. Photoreceptors also serve as genetically encoded agents in optogenetics to control by light organismal state and behavior. Phytochromes represent a superfamily of photoreceptors that transition between states absorbing red light (Pr) and far-red light (Pfr), thus expanding the spectral range of optogenetics to the near-infrared range. Although light of these colors exhibits superior penetration of soft tissue, the transmission through bone and skull is poor. To overcome this fundamental challenge, we explore the activation of a bacterial phytochrome by a femtosecond laser emitting in the 1 μm wavelength range. Quantum chemical calculations predict that bacterial phytochromes possess substantial two-photon absorption cross sections. In line with this notion, we demonstrate that the photoreversible Pr ↔ Pfr conversion is driven by two-photon absorption at wavelengths between 1170 and 1450 nm. The Pfr yield was highest for wavelengths between 1170 and 1280 nm and rapidly plummeted beyond 1300 nm. By combining two-photon activation with bacterial phytochromes, we lay the foundation for enhanced spatial resolution in optogenetics and unprecedented penetration through bone, skull, and soft tissue.  相似文献   

3.
Putative light-sensing proteins are ubiquitously encoded in the genomes of chemotrophic, non-photosynthetic bacteria. Surprisingly, these are not limited to UV-receptors: the metagenome of the chemotrophic prokaryotes encodes representatives of all known major families of photoreceptors. Insight into the mechanism of light-mediated signaling is relatively advanced, but most light-induced physiological and behavioral responses in chemotrophic bacteria are not well understood. In the current era of 'omics' studies, this knowledge gap could be closed rapidly. Here we review the state of the art in this field. Because light signals can be manipulated accurately, these photoreceptors might help provide a systems-level understanding of the cytology of bacteria.  相似文献   

4.
The growing number of sequenced prokaryotic genomes reveals a wide distribution of open reading frames (ORFs) that putatively encode for red- and blue light sensing photoreceptors. They comprise the bilin-binding phytochromes and the flavin-binding cryptochromes, LOV and BLUF proteins, indicating that about 1/4 of bacteria do possess at least one of these photosensory proteins. The distribution of red- and blue-light sensors among different prokaryotic phyla and classes, and their functional activity as light-switched systems are the subject of this perspective. These photoreceptors were originally found in plants by following the associated physiological responses induced by the respective spectral irradiation. Genome-based approaches now require the assignment of a photochemical/physiological function to the heterologously expressed gene product. Database searches demonstrate in some cases several genes of one category in a certain prokaryot, indicating the presence of more than one type of red- or blue-light sensing properties, but also show a combination of proteins with both spectral sensitivities. Another interesting feature now "comes into light": according to their nature as biological sensors, these photoreceptors are equipped with signalling domains, initiating a cellular response, thereby constituting modular systems switchable by light. It is seen that many of these signalling domains, now found together with light-inducible sensing domains, were already described for other stimuli, e.g., osmo-regulation, oxygen, hydrogen, chemicals, or pH. In some cases, the same type of signalling domain can be found in a red- or a blue-light sensing photoreceptor. Following the characterization of their photochemistry, for several of these bacterial photoreceptors physiological functions are now assigned.  相似文献   

5.
Macrophages detect bacterial infection through pattern recognition receptors (PRRs) localized at the cell surface, in intracellular vesicles or in the cytosol. Discrimination of viable and virulent bacteria from non-virulent bacteria (dead or viable) is necessary to appropriately scale the anti-bacterial immune response. Such scaling of anti-bacterial immunity is necessary to control the infection, but also to avoid immunopathology or bacterial persistence. PRR-mediated detection of bacterial constituents in the cytosol rather than at the cell surface along with cytosolic recognition of secreted bacterial nucleic acids indicates viability and virulence of infecting bacteria. The effector responses triggered by activation of cytosolic PRRs, in particular the RIG-I-induced simultaneous rapid type I IFN induction and inflammasome activation, are crucial for timely control of bacterial infection by innate and adaptive immunity. The knowledge on the PRRs and the effector responses relevant for control of infection with intracellular bacteria will help to develop strategies to overcome chronic infection.  相似文献   

6.
7.
Gut epithelial cells contact both commensal and pathogenic bacteria, and proper responses to these bacteria require a balance of positive and negative regulatory signals. In the Drosophila intestine, peptidoglycan-recognition proteins (PGRPs), including PGRP-LE, play central roles in bacterial recognition and activation of immune responses, including induction of the IMD-NF-κB pathway. We show that bacteria recognition is regionalized in the Drosophila gut with various functional regions requiring different PGRPs. Specifically, peptidoglycan recognition by PGRP-LE in the gut induces NF-κB-dependent responses to infectious bacteria but also immune tolerance to microbiota through upregulation of pirk and PGRP-LB, which negatively regulate IMD pathway activation. Loss of PGRP-LE-mediated detection of bacteria in the gut results in systemic immune activation, which can be rescued by overexpressing PGRP-LB in the gut. Together these data indicate that PGRP-LE functions as a master gut bacterial sensor that induces balanced responses to infectious bacteria and tolerance to microbiota.  相似文献   

8.
A transient state of tolerance to microbial molecules accompanies many infectious diseases. Such tolerance is thought to minimize inflammation-induced injury, but it may also alter host defenses. Here we report that recovery from the tolerant state induced by Gram-negative bacteria is greatly delayed in mice that lack acyloxyacyl hydrolase (AOAH), a lipase that partially deacylates the bacterial cell-wall lipopolysaccharide (LPS). Whereas wild-type mice regained normal responsiveness within 14 days after they received an intraperitoneal injection of LPS or Gram-negative bacteria, AOAH-deficient mice had greatly reduced proinflammatory responses to a second LPS injection for at least 3 weeks. In contrast, LPS-primed Aoah- knockout mice maintained an anti-inflammatory response, evident from their plasma levels of interleukin-10 (IL-10). LPS-primed Aoah-knockout mice experiencing prolonged tolerance were highly susceptible to virulent E. coli challenge. Inactivating LPS, an immunostimulatory microbial molecule, is thus important for restoring effective host defenses following Gram-negative bacterial infection in animals.  相似文献   

9.
Bacteria engage in a complex network of ecological interactions, which includes mobile genetic elements (MGEs) such as phages and plasmids. These elements play a key role in microbial communities as vectors of horizontal gene transfer but can also be important sources of selection for their bacterial hosts. In natural communities, bacteria are likely to encounter multiple MGEs simultaneously and conflicting selection among MGEs could alter the bacterial evolutionary response to each MGE. Here, we test the effect of interactions with multiple MGEs on bacterial molecular evolution in the tripartite interaction between the bacterium, Pseudomonas fluorescens, the lytic bacteriophage, SBW25φ2, and conjugative plasmid, pQBR103, using genome sequencing of experimentally evolved bacteria. We show that individually, both plasmids and phages impose selection leading to bacterial evolutionary responses that are distinct from bacterial populations evolving without MGEs, but that together, plasmids and phages impose conflicting selection on bacteria, constraining the evolutionary responses observed in pairwise interactions. Our findings highlight the likely difficulties of predicting evolutionary responses to multiple selective pressures from the observed evolutionary responses to each selective pressure alone. Understanding evolution in complex microbial communities comprising many species and MGEs will require that we go beyond studies of pairwise interactions.  相似文献   

10.
Blue-light photoreceptors containing light–oxygen–voltage (LOV) domains regulate a myriad of different physiological responses in both eukaryotes and prokaryotes. Their light sensitivity is intricately linked to the photochemistry of the non-covalently bound flavin mononucleotide (FMN) chromophore that forms a covalent adduct with a conserved cysteine residue in the LOV domain upon illumination with blue light. All LOV domains undergo the same primary photochemistry leading to adduct formation; however, considerable variation is found in the lifetime of the adduct state that varies from seconds to several hours. The molecular mechanism underlying this variation among the structurally conserved LOV protein family is not well understood. Here, we describe the structural characterization of PpSB1-LOV, a very slow cycling full-length LOV protein from the Gram-negative bacterium Pseudomonas putida KT2440. Its crystal structure reveals a novel dimer interface that is mediated by N- and C-terminal auxiliary structural elements and a unique cluster of four arginine residues coordinating with the FMN-phosphate moiety. Site-directed mutagenesis of two arginines (R61 and R66) in PpSB1-LOV resulted in acceleration of the dark recovery reaction approximately by a factor of 280. The presented structural and biochemical data suggest a direct link between structural features and the slow dark recovery observed for PpSB1-LOV. The overall structural arrangement of PpSB1-LOV, together with a complementary phylogenetic analysis, highlights a common ancestry of bacterial LOV photoreceptors and Per-ARNT-Sim chemosensors.  相似文献   

11.
Type I interferons (IFNs) are secreted cytokines that orchestrate diverse immune responses to infection. Although typically considered to be most important in the response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. Although diverse mechanisms have been described, bacterial induction of type I IFNs occurs upon stimulation of two main pathways: (i) Toll‐like receptor (TLR) recognition of bacterial molecules such as lipopolysaccharide (LPS); (ii) TLR‐independent recognition of molecules delivered to the host cell cytosol. Cytosolic responses can be activated by two general mechanisms. First, viable bacteria can secrete stimulatory ligands into the cytosol via specialized bacterial secretion systems. Second, ligands can be released from bacteria that lyse or are degraded. The bacterial ligands that induce the cytosolic pathways remain uncertain in many cases, but appear to include various nucleic acids. In this review, we discuss recent advances in our understanding of how bacteria induce type I interferons and the roles type I IFNs play in host immunity.  相似文献   

12.
13.
It is important to know the contributions of bacteria and fungi to decomposition in connection with both the structure of the food web and the functioning of the ecosystem. However, the extent of the competition between these groups of organisms is largely unknown. The bacterial influence on fungal growth in a soil system was studied by applying three different bacterial inhibitors – bronopol, tylosin and oxytetracycline – in a series of increasing concentrations, and comparing the resulting bacterial and fungal growth rates measured using leucine and acetate-in-ergosterol incorporation, respectively. Direct measurements of growth showed that fungi increased after adding inhibitors; the level of increase in fungal growth corresponded to that of the decrease in bacterial growth, irrespective of the bacterial inhibitor used. Similar antagonistic effects of the bacteria on fungal growth were also found after adding the bacterial inhibitors together with additional substrate (alfalfa or straw plant material). The resulting responses in bacterial and fungal growth indirectly indicated that the negative interaction between fungi and bacteria was mostly attributable to exploitation competition. The results of this study also emphasize the increased sensitivity of using growth-related, instead of biomass-based, measurements when studying bacterial and fungal interactions in soil.  相似文献   

14.
BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.  相似文献   

15.
16.
藻类发育的许多方面受光的调控,且多种多样的光受体参与藻类的光形态建成过程。本文就近年来藻类光形态建成领域的研究进展简要综述,内容以海洋藻类为主,主要包括光周期、非光周期控制的藻类发育类型,以及藻类的光受体的种类及分子特性,并兼顾与高等植物的相关特性进行比较。  相似文献   

17.
藻类的光控发育   总被引:11,自引:0,他引:11  
藻类发育的许多方面受光的调控,且多种多样的光受体参与藻类的光形态建成过程。本文就近年来藻类光形态建成领域的研究进展简要综述,内容以海洋藻类为主,主要包括光周期、非光周期控制的藻类发育类型,以及藻类的光受体的种类及分子特性,并兼顾与高等植物的相关特性进行比较。  相似文献   

18.
细菌磷酸转移酶系统(PTS)的组成与功能研究进展   总被引:1,自引:0,他引:1  
细菌磷酸烯醇丙酮酸(phosphoenolpyruvate,PEP)-磷酸转移酶系统(phosphotransferase system,PTS)广泛存在于细菌、真菌和一些古细菌中,但不存在于动植物中。PTS由酶I (EI)、组氨酸磷酸载体蛋白(HPr或NPr)和酶II复合物等磷酸转移酶组成,既具有催化转运功能,又具有非常广泛的调节功能。PTS主要是通过磷酸级联反应将各种糖及其衍生物进行磷酸化然后运输到胞内。其不仅参与碳、氮中心代谢,调节铁、钾稳态,调控某些病原体的毒力,还能介导应激反应。在这些不同的调节过程中,信号由PTS组分的磷酸化状态提供,而该磷酸化状态根据PTS底物的可用性和细胞代谢状态的变化而变化。本文对细菌中磷酸转移酶系统的组成和调控网络进行综述,以期为PTS的整体调控机制及其对细菌整体代谢影响的研究提供参考依据。  相似文献   

19.
Representatives of several categories of bacteria were added to soil to determine which of them might elicit responses from the soil protozoa. The various categories were nonobligate bacterial predators of bacteria, prey bacteria for these predators, indigenous bacteria that are normally present in high numbers in soil, and non-native bacteria that often find their way in large numbers into soil. The soil was incubated and the responses of the indigenous protozoa were determined by most-probable-number estimations of total numbers of protozoa. Although each soil was incubated with only one species of added bacteria, the protozoan response for the soil was evaluated by using most-probable-number estimations of several species of bacteria. The protozoa did not respond to incubation of the soil with either Cupriavidus necator, a potent bacterial predator, or one of its prey species, Micrococcus luteus. C. necator also had no effect on the protozoa. Therefore, in this case, bacterial and protozoan predators did not interact, except for possible competition for bacterial prey cells. The soil protozoa did not respond to the addition of Arthrobacter globiformis or Bacillus thuringiensis. Therefore, the autochthonous state of Arthrobacter species in soil and the survival of B. thuringiensis were possibly enhanced by the resistance of these species to protozoa. The addition of Bacillus mycoides and Escherichia coli cells caused specific responses by soil protozoa. The protozoa that responded to E. coli did not respond to B. mycoides or any other bacteria, and vice versa. Therefore, addition to soil of a nonsoil bacterium, such as E. coli, did not cause a general increase in numbers of protozoa or in protozoan control of the activities of other bacteria in the soil.  相似文献   

20.
抗菌药在医疗和畜牧生产中的滥用导致了细菌抗药性的产生,这个公共卫生问题引起了人们越来越多的关注。除了基因突变和获得形成的抗药性 (Resistance) 外,细菌在自然环境中遇到的各种压力会引发其产生应激反应,这不仅可以保护细菌免受这些压力的影响,还会改变细菌对抗菌药的耐药性 (Tolerance)。耐药性的产生必然会影响细菌的生理代谢,但是细菌可以通过调节自身代谢恢复对药物的敏感性。文中综述了近年来细菌应激反应和生理代谢与细菌耐药性之间的相关研究,以期采取更加有效的措施来控制细菌抗药性的发生和蔓延。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号