首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human platelet membrane glycoproteins IIb and III are two major integral membrane components that have been identified as sites mediating thrombin-induced aggregation. For purposes of our study, glycoproteins IIb and III were solubilized by extracting platelet plasma membranes with a buffer containing 0.1% Triton X-100 and were separated by gel filtration chromatography on Sephacryl S-300, employing Triton X-100-containing column buffers with or without urea or guanidine hydrochloride. The physical properties of the purified glycoproteins were: for glycoprotein IIb, Rs = 61 A, s20.w = 4.7, f/f0 = 1.7, Mr = 125,000 (hydrodynamic values), Mr = 136,000 (sodium dodecyl sulfate gels); for glycoprotein III, Rs = 67 A, s20,w = 3.2 f/f0 = 2.1, Mr = 93,000 (hydrodynamic values), Mr = 95,000 (sodium dodecyl sulfate gels). Although the amino acid compositions of the two glycoproteins were similar, antibodies raised against glycoprotein IIb did not crossreact with glycoprotein III. If divalent cations were not chelated in the Triton extract, glycoproteins IIb and III coeluted during gel filtration chromatography (apparent Stokes radius of 71 A) and co-sedimented on sucrose gradients (apparent s20.w of 8.6), from which Mr = 265,000 was calculated. Glycoproteins IIb and III were coprecipitated by an antibody monospecific for glycoprotein IIb. The two glycoproteins dissociated into monomers when EDTA was added to Triton lysates. Readdition of Ca2+ caused them to reassociate into a complex with physical properties similar to those of the complex in the original Triton lysate. The data show that glycoproteins IIb and III are a heterodimer complex, that complex formation depends upon the presence of Ca2+, and that chelation of Ca2+ causes dissociation into monomeric glycoproteins.  相似文献   

2.
Bovine epididymal spermatozoa were subjected to nitrogen cavitation (600 psi for 10 min) to remove plasma membrane. Examination of the cavitated cells by electron microscopy revealed that the plasma membrane was preferentially removed from the periacrosomal and flagellar regions. Nuclear, mitochondrial and acrosomal membranes remained intact and attached to the spermatozoa, but the cytoplasmic droplets were frequently disrupted and their internal membrane-bound vesicles were released. Lower pressures (less than 200 psi) were relatively ineffective in removing the periacrosomal plasma membrane, while an intermediate pressure (400 psi) removed this membrane from about 70% of the spermatozoa. No apparent selectivity for removal of the periacrosomal and flagellar plasma membrane was observed as a function of cavitation pressure. The cavitated cells were separated from the plasma membranes by differential followed by linear sucrose density gradient centrifugation. Two distinct membrane populations were resolved on sucrose gradients and were designated Band I and Band II. Band I contained only spherical vesicles which arose from the plasma membrane. Surface labeling of intact cells confirmed the plasma membrane as the origin of Band I. The membranes of higher density comprising Band II were heterogeneous consisting of both spherical and flattened vesicles. When purified cytoplasmic droplets were cavitated and centrifuged on the sucrose gradient only Band II was obtained. These studies indicate that nitrogen cavitation of bovine epididymal spermatozoa can result in significant contamination of plasma membrane fractions by cytoplasmic droplet membranes unless appropriate differential centrifugation is used to separate the membrane fractions.  相似文献   

3.
Two minor glycoproteins GP-II and GP-III, were isolated from human erythrocyte membranes and characterized chemically and immunologically. The chemical composition of GP-II and GP-III was similar: GP-II consisted of 81% protein and 19 % carbohydrate of which 4.9 % was hexose. 5.4 % hexosamine and 7.8 % sialic acid. GP-III consisted of 76 % protein and 24 % carbohydrate of which 7.6 % was hexose, 7.2 % hexosamine and 8.1 % sialic acid. The amino acid composition of GP-II and GP-III was also similar. GP-II and GP-III, however, differed in chemical composition from the MN glycoprotein. GP-II and GP-III were associated with the blood group activities Ss, I and A, but not with the MN antigens. GP-III had higher blood group activities per μg of protein than did GP-II. The specific activities for the Ss blood group antigens were increased 3–10-fold by purification of GP-III from the aqueous phase of chloroform methanol extracts.  相似文献   

4.
As a preliminary to a study of the biogenesis of individual plasma membrane glycoproteins, the marker enzyme nucleotide pyrophosphatase (NPPase) and a major rat liver plasma membrane sialoprotein, subsequently found to be identical with the enzyme dipeptidyl peptidase IV (DPP IV), were purified 10,000- and 2,000-fold, respectively, from rat liver. Both were amphipathic proteins which formed defined micellar complexes with detergents and aggregated in their absence. Gel filtration, sucrose density gradient centrifugation, and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the Triton X-100 complex of NPPase to contain a single 150,000-dalton peptide, while that of DPP IV was composed of two 120,000-dalton subunits; each complex also contained about 150,000-dalton Triton X-100. Trypsin cleaved the detergent complexes with release of major hydrophilic fragments which no longer bound detergent micelles; the accompanying change in peptide size was small for NPPase and undetectable for DPP IV, which also retained the dimer structure of its native form. DPP IV was the only major glycoprotein in rat liver plasma membrane which bound strongly to wheat germ agglutinin. Monospecific rabbit antibodies against NPPase and DPP IV precipitated the antigens without affecting their enzymatic activities.  相似文献   

5.
Several calcium-dependent protein kinases (CDPKs) are located in plant plasma membranes where they phosphorylate enzymes and transporters, like the H+-ATPase and water channels, thereby regulating their activities. In order to determine which kinases phosphorylate the H+-ATPase, a calcium-dependent kinase was purified from beetroot (Beta vulgaris L.) plasma membranes by anion-exchange chromatography, centrifugation in glycerol gradients and hydrophobic interaction chromatography. The kinetic parameters of this kinase were determined (V max: 3.5 μmol mg−1 min−1, K m for ATP: 67 μM, K m for syntide 2: 15 μM). The kinase showed an optimum pH of 6.8 and a marked dependence on low-micromolar Ca2+ concentrations (K d : 0.77 μM). During the purification procedure, a 63-kDa protein with an isoelectric point of 4.7 was enriched. However, this protein was shown not to be a kinase by mass spectrometry. Kinase activity gels showed that a 50-kDa protein could be responsible for most of the activity in purified kinase preparations. This protein was confirmed to be a CDPK by mass spectrometry, possibly the red beet ortholog of rice CDPK2 and Arabidopsis thaliana CPK9, both found associated with membranes. This kinase was able to phosphorylate purified H+-ATPase in a Ca2+-dependent manner.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

6.
Plasma membranes were detached from ejaculated bull spermatozoa by a brief sonication in a moderately hypotonic medium, and the released plasma membranes were partially purified by differential centrifugation. The resulting fraction was enriched 8- and 15-fold in alkaline phosphatase and 5' nucleotidase activities, respectively, compared with the starting sonicated spermatozoa. This total plasma membrane fraction was separated into two distinct fractions by equilibrium density centrifugation on a continuous linear sucrose gradient. Two peaks of light scattering material were formed at densities of 1.117 and 1.148 g/ml. The denser peak contained most of the protein of the plasma membrane fraction, whereas nearly all the concanavalin A binding activity was found in the lighter peak. The two bands had distinctly different polypeptide compositions when analyzed by SDS PAGE. Polyclonal antibodies were raised in rabbits against a major integral membrane glycoprotein of each fraction (Mr of 92,000 in the light peak and 98,000 in the dense peak). The two antigens were detected on the surface of intact spermatozoa by indirect immunofluorescence microscopy. The 92-kD protein (present in the lighter band) was detected only on the plasma membrane of the acrosomal and anterior postacrosomal regions of the head. The 98-kD antigen, present in the heavier band, was localized to the surface of the postacrosomal region of the head, to the principal piece of the tail, and to the connecting piece between the head and tail. The exclusive localization of the 92-kD polypeptide to the surface of the anterior portion of the head was confirmed by immunoelectron microscopy. These data show that the two fractions isolated on the sucrose gradient originate from different regions of the sperm cell plasma membrane.  相似文献   

7.
Alkaline phosphatase was purified from plasma membranes of rat ascites hepatoma AH-130, the homogenate of which had 50-fold higher specific activity than that found in the liver homogenate. The presence of Triton X-100, 0.5%, was essential to avoid its aggregation and to stabilize its activity. The purified enzyme, a glycoprotien, was homogeneous in polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated a protein molecular weight of 140,000. The addition of beta-mercaptoethanol caused the dissociation of the alkaline phosphatase into two subunits of identical molecular weight, 72,000. Isoelectric focusing revealed that the pI of this enzyme is 4.7. The pH optimum for the purified enzyme was 10.5 or higher with p-nitrophenylphosphate, and slightly lower pH values (pH 9.5--10.2) were obtained when other substrates were used. Of the substrates tested, p-nitrophenylphosphate (Km-0.3 mM) was most rapidly hydrolyzed. Vmax values of other substrates relative to that of p-nitrophenylphosphate were as follows; beta-glycerophosphate, 76%; 5'-TMP, 82%; 5'-AMP, 62%; 5'-IMP, 43%; glucose-6-phosphate, 39%; ADP, 36% and ATP, 15%. More than 90% of the activity of the purified enzyme was irreversibly lost when it was heated at 55 degrees C for 30 min, or exposed either to 10 mM beta-mercaptoethanol for 10 min to 3 M urea for 30 min, or to an acidic pH below pH 5.0 for 2 h. Of the effects by divalent cations, Mg2+ activated the enzyme by 20% whereas Zn2+ strongly inhibited it by 95% at 0.5 mM. EDTA at higher than 1 mM inactivated the enzyme irreversibly, although the effect of EDTA at lower than 0.1 mM was reversible by the addition of divalent cations, particularly by Mg2+. The enzyme was most strongly inhibited by L-histidine among the amino acids tested, and also strongly inhibited by imidazole. These results suggest that alkaline phosphatase of rat hepatoma AH-130 is very similar to that of rat liver in most of the properties reported so far.  相似文献   

8.
K Nagata  Y Nozawa 《FEBS letters》1988,238(1):90-94
Two GTP-binding proteins (G-proteins) of 22 kDa were purified to near homogeneity from a sodium cholate extract of human platelet membranes by successive chromatographies on DEAE-Sephacel, Ultrogel AcA-44, phenyl-Sepharose CL-4B, Mono Q HR5/5 and hydroxyapatite columns. They bound maximally 0.89 mol of [35S]guanosine 5'-(3-O-thio)triphosphate per mol of both purified proteins, and this binding was inhibited by GTP and GDP but not by ATP and AppNHp. Their molecular masses were somewhat lower than that of ras p21 and they were not recognized by an anti-v-Ki-ras p21 antibody. These results indicate that human platelet membranes contain at least two low-molecular-mass G-proteins distinct from ras p21, in addition to the heterotrimeric G-proteins, the alpha-subunits of which possess molecular mass values of about 40 kDa.  相似文献   

9.
Two major glycoproteins of bovine peripheral nerve myelin were isolated from the acid-insoluble residue of the myelin by a procedure involving delipidation with chloroform/methanol (2:1, v/v) and chromatography on Sephadex G-200 column with a buffer containing sodium dodecyl sulfate. The separation patterns of the proteins on the gel were affected considerably by the dodecyl sulfate concentration in the elution buffer. At above 2% dodecyl sulfate concentration in the elution buffer, the glycoproteins could be separated clearly on the gel and were purified. The purified proteins, the BR protein (mol. wt. 28 000) and the PAS-II protein (mol. wt. 13 000), were homogeneous on dodecyl sulfate-polyacrylamide gel electrophoresis. The NH2-terminal amino acids of the BR and the PAS-II proteins were isoleucine and methionine, respectively. The BR protein contained glucosamine, mannose, galactose, fucose and sialic acids and the PAS-II protein contained glucosamine, mannose, galactose, fucose and glucose. Neither the BR protein nor the PAS-II were a glycosylated derivative of a basic protein of bovine peripheral nerve myelin, a deduction based on the results of amino acid analysis. The two major glycoproteins were observed commonly in the peripheral nerve myelin of cows, pigs, rabbits and guinea pigs, using dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

10.
Two members of the aquaporin family, PM28A and a new one, PM28C, were isolated and shown to be the major constituents of spinach leaf plasma membranes. These two isoforms were identified and characterized by matrix-assisted laser desorption ionization-mass spectrometry. Edman degradation yielded the amino acid sequence of two domains belonging to the new isoform. PM28B, a previously described isoform, was not found in our preparations. Scanning transmission electron microscopy mass analysis revealed both PM28 isoforms to be tetrameric. Two types of particles, a larger and a smaller one, were found by transmission electron microscopy of negatively stained solubilized proteins and by atomic force microscopy of PM28 two-dimensional crystals. The ratio of larger to smaller particles observed by transmission electron microscopy and single particle analysis correlated with the ratio of PM28A to PM28C determined by matrix-assisted laser desorption ionization-mass spectrometry. The absence of PM28B and the ratio of PM28A to PM28C indicate that these plasma membrane intrinsic proteins are differentially expressed in spinach leaves. These findings suggest that differential expression of the various aquaporin isoforms may regulate the water flux across the plasma membrane, in addition to the known mechanism of regulation by phosphorylation.  相似文献   

11.
Two acidic glycoproteins of molecular mass 92 kDa and 56 kDa were purified from 4 M guanidine hydrochloride extracts of chick sternal cartilage, by density gradient centrifugation, ion-exchange chromatography, gel chromatography and SDS/PAGE. The glycoproteins differed in their amino acid and carbohydrate compositions. They were identified by the immunoblotting technique in extracts of chick articular cartilage from various sites and in extracts of cartilage from other species. The proteins are synthesized by the chondrocytes and show a partial cross-reactivity between their antisera.  相似文献   

12.
Isolation of subcellular fractions from dry structures such as seeds or their tissues is difficult. In the present work, plasma membranes were isolated from dry maize ( Zea mays L.) embryos with an enrichment of 11-fold as estimated by glucan synthase II (GSII, EC 2.4.1.34) activity and a purity of 78 to 90% as judged by the sensitivity of ATP hydrolysis to vanadate, a specific inhibitor of the plasma membrane H+-ATPase (EC 3.6.1.35). The procedure involved a double homogenization of the dry embryos and the addition of a 1500- g supernatant to an aqueous polyethyleneglycol-dextran two-phase partitioning system; the optimal ratio of polyethyleneglycol-dextran for purification of plasma membranes from dry seeds was 6.8/6.8% (w/w). In the isolated membranes a trace of a tonoplast enzyme marker (tonoplast H+-ATPase, EC 3.6.1.3) could be detected, but there were negligible amounts of mitochondrial and rough endoplasmic reticulum markers, H+-ATPase (EC 3.6.1.34) and diacylglycerol acyltrans-ferase (EC 2.3.1.20), respectively. The technique could also be used in hydrated embryos. The entire procedure can be carried out in 5 to 6 h. The resulting preparation is stable for at least 2 months at −70°C. The membranes of dry and hydrated embryos exhibited a high level of vanadate-sensitive ATPase activity that was increased by lysophosphatidylcholine.  相似文献   

13.
Purification and characterization of human lysosomal membrane glycoproteins   总被引:24,自引:0,他引:24  
Two human cell lysosomal membrane glycoproteins of approximately 120 kDa, hLAMP-1 and hLAMP-2, were identified by use of monoclonal antibodies prepared against U937 myelomonocytic leukemia cells or blood mononuclear cells. The two glycoproteins were purified by antibody affinity chromatography and each was found to be a major constituent of human spleen cells, representing approximately 0.05% of the total detergent-extractable protein. Both molecules were highly glycosylated, being synthesized as polypeptides of 40 to 45 kDa and cotranslationally modified by the addition of Asn-linked oligosaccharides. NH2-terminal sequence analysis indicated that each was approximately 50% identical to the corresponding mLAMP-1 or mLAMP-2 of mouse cells. Electron microscopic studies of human blood monocytes, HL-60, and U937 cells demonstrated that the principal location of these glycoproteins was intracellular, in vacuoles and lysosomal structures but not in the peroxidase-positive granules of monocytes. Transport of the proteins between organelles was evidenced by their marked accumulation in the membranes of phagolysosomes. A fraction of each glycoprotein was also detected on the plasma membrane of U937 and HL-60 cells but not on a variety of other tissue culture cells. This cell-surface expression may be differentiation related, since the proteins were not detected in the plasma membrane of normal blood monocytes and their expression on U937 and HL-60 cells was reduced when the cells were treated with differentiating agents. Cell-surface expression of both glycoproteins was markedly increased in blood monocytes but not in U937 cells after exposure to the lysosomotropic reagent methylamine HCl, indicating differences in LAMP-associated membrane flow in these cell types.  相似文献   

14.
The two-phase partition system in comparison to the traditional methods used thus far (density gradients) for the isolation of the plasma membrane from cyanobacteria is described. The advantages of the two-phase system are: A short-time preparation of 3–4 h compared to 16–48 h required for the density gradient method; a purer fraction, resulting from separation according to membrane surface charge and hydrophobicity, not specific density; and, ease of scaling-up for obtaining large quantities.
Also, the different biological activities attributed to this membrane to date are summarized. Findings on the typical plasma membrane ATPase (P-type ATPase) as well as the nutrient transporters and the corresponding proteins are included. As for the electron transport chain, one may conclude that this membrane contains a complete system (similar to that of the mitochondrion), portraying apparently F-type (F0F1) ATPase activity.  相似文献   

15.
A 120-kDa glycoprotein was found in beet root (Beta vulgaris L.) plasma membranes. This protein could be phosphorylated in a Ca2+-independent manner. Its carbohydrate moiety was composed of both O-linked galactose-beta(1-3)-N-acetylgalactosamine disaccharides (which bind peanut agglutinin) and N-linked concanavalin A (ConA)-binding oligosaccharides. The phosphorylation of this protein was rapid, half-saturated with 6 microM ATP and higher at alkaline pH values. This protein was phosphorylated more efficiently with Mn-ATP as substrate than with Mg-ATP. This phosphorylation increased when plasma membranes were illuminated with low-fluence blue light, a fact suggesting that the 120-kDa glycoprotein could be similar to phototropin: a blue-light photoreceptor involved in phototropism. This protein was purified using a ConA-Sepharose column. The phosphorylation of the purified protein could be observed, but it was much lower than that of the 120-kDa protein in plasma membranes. In addition, it was not enhanced by light. Some possible explanations for this photosensitivity loss are discussed.  相似文献   

16.
Plasma membrane-associated redox systems play important roles in regulation of cell growth, internal pH, signal transduction, apoptosis, and defense against pathogens. Stimulation of cell growth and stimulation of the redox system of plasma membranes are correlated. When cell growth is inhibited by antitumor agents such as doxorubicin, capsaicin, and antitumor sulfonylureas, redox activities of the plasma membrane also are inhibited. A doxorubicin-inhibited NADH-quinone reductase was characterized and purified from plasma membranes of rat liver. First, an NADH-cytochrome b(5) reductase, which was doxorubicin-insensitive, was removed from the plasma membranes by the lysosomal protease, cathepsin D. After removal of the NADH-cytochrome b(5) reductase, the plasma membranes retained a doxorubicin-inhibited NADH-quinone reductase activity. The enzyme, with an apparent molecular mass of 57 kDa, was purified 200-fold over the cathepsin D-treated plasma membranes. The purified enzyme had also an NADH-coenzyme Q(0) reductase (NADH: external acceptor (quinone) reductase; EC 1.6.5.) activity. Partial amino acid sequence of the enzyme showed that it was unique with no sequence homology to any known protein. Antibody against the enzyme (peptide sequence) was produced and affinity-purified. The purified antibody immunoprecipitated both the NADH-ferricyanide reductase activity and NADH-coenzyme Q(0) reductase activity of plasma membranes and cross-reacted with human chronic myelogenous leukemia K562 cells and doxorubicin-resistant human chronic myelogenous leukemia K562R cells. Localization by fluorescence microscopy showed that the reaction was with the external surface of the plasma membranes. The doxorubicin-inhibited NADH-quinone reductase may provide a target for the anthracycline antitumor agents and a candidate ferricyanide reductase for plasma membrane electron transport.  相似文献   

17.
We have identified the presence of a lysophospholipase in human placental tissues and have purified this enzyme from the amnion. The specific activity was highest in the amnion and decreased across adjacent tissues. The purification involved the use of DEAE-Sephadex, phenyl-Sepharose, hydroxylapatite, and sulfylpropyl Sephadex chromatography. The activity of the purified enzyme toward palmitoyl lysophosphatidylcholine is 2.5 mumol min-1 mg-1 and the pH optimum is 7.0. The enzyme is not inhibited by EDTA and does not appear to have a metal ion requirement. The enzyme may be of membrane origin; the purified enzyme requires the presence of detergent during storage. The effects of substrate composition and physical state on enzymatic activity were explored. The enzyme was not active toward mono-, di-, or triglycerides, nor toward diacyl phospholipid. The enzyme was active toward myristoyl and palmitoyl lysophosphatidylcholine at concentrations where these substrates spontaneously form micelles or where Triton X-100 was used to induce co-micellization of the substrate at low concentrations with detergent. A role for this enzyme in processing the lysophospholipid product of phospholipase A action must be considered in evaluating arachidonic acid production in human fetal membranes and placental tissue, particularly during the initiation of labor.  相似文献   

18.
19.
A calcium-regulated protein kinase (CRPK) associated with the plasma membrane of beet root cells was purified by deoxycholate extraction of plasma membrane proteins followed by chromatography in DEAE- and phenyl-Sepharose columns. This procedure rendered a purified CRPK preparation with a specific activity higher than 2.2 μmol mg-1min-1 using histone III-S as substrate. The molecular mass of CRPK, estimated by SDS-PAGE, was 58 kDa. Gel filtration and glycerol gradient centrifugation indicated that the native enzyme is a monomer. Phosphorylation of histone by CRPK displayed a broad pH optimum between 7.0 and 8.2, Syntide-2, a CaM-kinase II substrate, was phosphorylated much more efficiently than kemptide, Ac-MBP (4–14), CKII substrate or poly-(Glu, Tyr) 4:1. The kinetics of this enzyme can be described by a steady-state ordered mechanism in which four bound Ca2+ ions are required for the phosphorylation of the peptide substrate. After Ca2+ binding, the affinity of the enzyme for ATP was not affected while that for syntide-2 or histone decreased. Curves of kinase activity vs ATP at different syntide-2 concentrations indicated that the Km values for ATP or syntide-2 increased with increasing cosubstrate concentrations. Similar curves of kinase activity vs ATP at different histone concentrations indicated that the apparent affinities of CRPK for ATP or histone were not affected by the cosubstrate concentration. The purified CRPK was not recognized by antibodies against soybean or Arabidopsis calcium-dependent protein kinase (CDPK). These results suggest that CRPK and CDPKs could be different enzymes, although they show some similar properties.  相似文献   

20.
Plasma membranes were isolated from calf thyroid microsomes and further resolved into two subfractions by sucrose density gradient centrifugations. The lighter and major membrane fraction was obtained in a yield of 10 mg/100 g of thyroid and was enriched 38-fold with respect to 5′-nucleotidase activity compared to the homogenate. It differed from the denser plasma membrane fraction in containing greater amounts of phospholipid and cholesterol but had a similar total carbohydrate content (16 mg/100 mg protein) and monosaccharide composition. The membranes were found to retain most (80%) of their carbohydrate after delipidation. The major protein-bound sugars present in the lighter membrane fraction expressed as micromoles per 100 mg of peptide were: galactose 24, mannose 17, fucose 3, glucosamine 23, galactosamine 4, and sialic acid 9. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate of the lipid-free membranes revealed at least 18 protein bands and 3 periodic acid-Schiffreactive glycoprotein components. Incubation of the delipidated membranes with Pronase resulted in the solubilization of 95% of the saccharide portion which upon filtration through Bio-Gel P-6 and P-10 columns yielded several glycopeptide fractions. While some of the carbohydrate was found in glycopeptides which appeared to contain the well-known complex and polymannose asparagine-bound oligosaccharides, as well as small O-glycosidically linked units, approximately half was recovered in high molecular weight components which contained galactose and glucosamine as their principal sugar constituents, and which were similar in composition to glycopeptides recently isolated (T. Krusius, J. Finne, and H. Rauvala, 1978, Eur. J. Biochem.92, 289–300) from human erythrocyte membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号