首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terminalia arjuna (Ta) bark contains various natural antioxidants and has been used to protect animal cells against oxidative stress. In the present study, we have examined alleviating effects of Ta bark aqueous extract against Ni toxicity in rice (Oryza sativa L.). When rice seedlings were raised for 8 days in hydroponics in Yoshida nutrient medium containing 200 μM NiSO4, a decline in height, reduced biomass, increased Ni uptake, loss of root plasma membrane integrity, increase in the level of O2˙?, H2O2 and ˙OH, increased lipid peroxidation, decline in photosynthetic pigments, increase in the level of antioxidative enzymes superoxide dismutase, catalase and glutathione peroxidase and alterations in their isoenzyme profile patterns were observed. Transmission electron microscopy (TEM) showed damage to chloroplasts marked by disorganised enlarged starch granules and disrupted thylakoids under Ni toxicity. Exogenously adding Ta bark extract (3.2 mg ml?1) to the growth medium considerably alleviated Ni toxicity in the seedlings by reducing Ni uptake, suppressing generation of reactive oxygen species, reducing lipid peroxidation, restoring level of photosynthesis pigments and ultrastructure of chloroplasts, and restoring levels of antioxidative enzymes. Results suggest that Ta bark extract considerably alleviates Ni toxicity in rice seedlings by preventing Ni uptake and reducing oxidative stress in the seedlings.  相似文献   

2.
3.
Exogenous EDDS modifies copper-induced various toxic responses in rice   总被引:1,自引:0,他引:1  
Copper is a micronutrient required for living organisms, but is potentially toxic in excess. EDDS enhances the phytoextraction of many metals, but the underlying mechanism is fully unclear. Exposure of 200 μM Cu2+ for 3 days resulted in rice seedling growth inhibition, accompanied by a decrease in plasma membrane H+-ATPase activity, and an increase in relative electrolyte leakage ratios, indicating that maintaining of membrane structure integrity is crucial in acclimation of plants to heavy metal stress. In addition, the chlorophyll and carotenoid content was markedly decreased and the level of the mRNA of Cytochrome P450 gene, OsHMA9, the sulfate transporter gene, and the metallothionein-like protein gene was observed to increase in response to Cu stress. Cu treatment also induced a global epigenetic response which is associated with cell nucleus condensation. These physiological, genetic, and epigenetic responses of rice seedlings to excess copper were modified by the addition of EDDS, suggesting that the supply of EDDS in medium containing a high concentration of Cu ions could enhance plant tolerance potential to excess Cu toxicity through alleviating Cu-induced poisonous effects at various levels.  相似文献   

4.
Interactive effects of two heavy metal pollutants Cd and Pb in the growth medium were examined on their uptake, production of reactive oxygen species (ROS), induction of oxidative stress and antioxidative defence responses in Indica rice (Oryza sativa L.) seedlings. When rice seedlings in sand culture were exposed to 150 μM Cd (NO3)2 or 600 μM Pb (CH3COO)2 individually or in combination for 8–16 days, a significant reduction in root/shoot length, fresh weight, relative water content, photosynthetic pigments and increased production of ROS (O2˙? and H2O2) was observed. Both Cd and Pb were readily taken up by rice roots and localisation of absorbed metals was greater in roots than in shoots. When present together in the growth medium, uptake of both the metals Cd and Pb declined by 25–40 %. Scanning electron microscope (SEM) imaging of leaf stomata revealed that Pb caused more distortion in the shape of guard cells than Cd. Dithizone staining of roots showed localisation of absorbed Cd on root hairs and epidermal cells. Both Cd and Pb caused increased lipid peroxidation, protein carbonylation, decline in protein thiol and increase in non-protein thiol. The level of reduced forms of non-enzymic antioxidants glutathione (GSH) and ascorbate (AsA) and their redox ratios (GSH/AsA) declined, whereas the activities of antioxidative enzymes superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased in metal treated seedlings compared to controls. In-gel activity staining also revealed increased intensities of SOD and GPX isoforms with metal treatments. Catalase (CAT) activity increased during early days (8 days) of metal exposure and declined by 16 days. Results suggest that oxidative stress is an important component in expression of Cd and Pb toxicities in rice, though uptake of both metals gets reduced considerably when present together in the medium.  相似文献   

5.
The effect of silicon (Si) nutrition on low-level cadmium (Cd) toxicity symptoms was investigated in hydroponically-grown rice seedlings (Oryza sativa L.). Silicon (0.0, 0.2, or 0.6 mM) was added when seedlings were 6 or 20 days old representing early (SiE) or late (SiL) Si treatment, respectively. Cadmium (0.0 or 2.5 μM) was added when seedlings were 6 days old. Measurements included generation of CO2 and light response curves; chlorophyll fluorescence analysis; growth; and tissue-element content analysis. Our results showed that low-level Cd treatment generally inhibited growth and photosynthesis. However, the addition of 0.2 or 0.6 mM SiE or SiL significantly reduced root- and leaf-Cd content. Consequently, the addition of 0.6 mM SiL significantly alleviated low-level Cd-induced inhibition of growth. Furthermore, 0.2 mM Si treatment significantly reduced g s compared to 0.0 or 0.6 mM Si without inhibiting A, especially in +Cd plants, suggesting an increase in instantaneous water-use-efficiency (IWUE). Additionally, in +Cd plants, the addition of 0.6 mM SiE significantly reduced F o but increased F v/F m, while treatment with 0.2 mM SiL significantly increased qP, suggesting an increase in light-use-efficiency. We thus, propose that 0.6 mM SiL treatment is required for the alleviation of low-level Cd-mediated growth inhibition. Furthermore, we suggest that 0.2 mM Si concentration might be close to the optimum requirement for maximum Si-induced increase in IWUE in rice plants, especially when under low-level Cd-stress. Our results also suggest that Si alleviates low-level Cd toxicity by improving light-use-efficiency.  相似文献   

6.
The aim of the present work was to explore physiological changes provoked by somaclonal variation in response to salinity. Two parental cultivars (La Candelaria and Yerua) and their derived somaclones were used as a source for breeding new rice lines with improved salt tolerance. We studied the effect of NaCl salt stress on chlorophyll fluorescence-related parameters, such as the maximum quantum yield of primary PSII photochemistry (F v/F m) and the performance index for energy conservation from photon absorbed by PSII antenna (PIABS). In addition malondialdehyde (MDA) content and leaf temperature (LT) responses were also measured. In somaclonal lines, F v/F m, PIABS, MDA and LT showed coefficients of variation of 13.7, 39.3, 25.5, and 3 %, respectively, for La Candelaria and 1.4, 17.6, 34.4 and 3 % for Yerua. However, the fragrant character did not differ in the aromatic somaclonal lines with respect to their parentals. Our results suggest that the F v/F m ratio would not be as good marker of PSII vitality as PIABS for salinized rice somaclones, unless they are highly susceptible to salinity. On other hand, the MDA content showed a strong negative correlation with the PIABS content in somaclones of both rice cultivars, suggesting that MDA levels could also be used as an oxidative damage index in rice somaclones.  相似文献   

7.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

8.
To investigate the effect of exogenous Spermidine (Spd) and Spermine (Spm) on drought-induced damage to seedlings of Cerasus humili, relative water content (RWC), malondialdehyde content, relative electrolyte leakage, superoxide (O2 ?, SOD) generation rate, hydrogen peroxide (H2O2), endogenous polyamines (PAs), antioxidant enzymes [SOD and peroxidase (POD)] activities, PA-biosynthetic enzymes [arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC)] activities, as well as photosynthetic parameters, were measured in greenhouse cultured seedlings of C. humili. The results showed that either exogenous Spd or Spm (0.2 mM) significantly enhanced the level of RWC and prevented drought-induced lipid peroxidation. They also significantly enhanced photosynthetic capability and decreased O2 ? generation rate and H2O2 content. In addition, Spd and Spm helped to maintain SOD and POD activities in C. humili seedlings subjected to water stress, suggesting that they exerted a positive effect on antioxidant systems. The contents of endogenous free putrescine, Spd and Spm were increased to different extents in water-stressed C. humili seedlings. By the end of drought treatment (21 days) with exogenous Spd or Spm, the contents of free Spd increased by 30 and 38 %, respectively, and endogenous Spm increased by 41 and 26 %, respectively, compared with water-stressed plants. Furthermore, exogenous Spd or Spm enhanced the activities of ADC, ODC, and SAMDC. The pretreatment with Spd or Spm prevents oxidative damage induced by drought, and the protective effect of Spd was found to be greater than that of Spm.  相似文献   

9.
Heavy metal accumulation due to environmental pollution, especially in agricultural ecosystem can cause serious deterioration of crop yield and quality. In present study we assessed the effect of exogenous 28-homobrassinoloid (HBL; 10?8 M) on growth, photosynthesis, indices of chlorophyll a fluorescence and nitrogen metabolism in Solanum lycopersicum seedlings grown under two doses (Cd1: 3 mg kg?1 sand and Cd2: 9 mg kg?1 sand) of cadmium. Accumulation of Cd in root tissues was considerably higher than shoot hence, Cd declined the growth, pigment contents, and photosynthetic O2 yield in its concentration dependent manner. Chlorophyll a fluorescence due to Cd stress was negatively affected as shown by decreased QA ? reoxidation kinetics: φP0, ψ0, φE0 and PI_ABS and increased energy flux parameters: ABS/RC, TR0/RC, ET0/RC and DI0/RC. HBL application under Cd stress improved the photochemistry of photosystem II (PS II) by affecting these parameters positively. Treatment of Cd in test seedlings resulted into significant decrease in nitrate reductase, nitrite reductase, glutamine synthetase and glutamate synthase activities, and induced enhancing effect on ammonium content and glutamate dehydrogenase activity. Exogenous HBL treatment alleviated the negative effect of Cd on growth, photosynthesis, contents of protein, carbohydrate and inorganic nitrogen and nitrogen assimilating enzymes. The data indicate that exogenous HBL protects the test seedlings during the early growth phase against Cd phytotoxicity by regulating Cd accumulation in tissues and two key metabolic processes; photosynthesis and nitrogen metabolism.  相似文献   

10.
Bovine herpesvirus type 5 (BoHV-5) is an important etiologic agent of meningoencephalitis in cattle and has been frequently identified in outbreaks of neurological disease in bovine in the southern hemisphere including Brazil. This study aimed to evaluate the cytotoxic effect and the antiviral properties of extracts obtained from Plocamium brasiliense (Greville) Howe and Taylor in BoHV-5 RJ42/01 replication. The cytotoxic effects were measured in Madin-Darbin bovine kidney cells (MDBK) and cytotoxic concentration (CC50) values have been determined for acyclovir (ACV) (223 μg?±?2.0), ethyl acetate extract from P. brasiliense (2,109 μg?±?10), hexane extract from P. brasiliense (7.181 μg?±?5), dichloromethane extract from P. brasiliense (2.356 μg?±?6.5), and hydroalcoholic extract from P. brasiliense (1.408 μg?±?5.8). As a first approach to characterize the action of these extracts on BoHV-5 RJ42/01, a virucidal assay activity was performed. A virus suspension containing 1?×?105 plaque-forming units (PFU) of the BoHV-5 RJ42/01 was mixed with 600 μg of extract and acyclovir and kept at room temperature (24 °C) for 3 h. Meanwhile, a control of untreated infected virus was performed in the same conditions. Then, treated virus suspension and untreated control were diluted, and percentage of inhibition of infectivity was determined by plaque assay: ethyl acetate extract (99 %), hexane extract (90 %), dichloromethane extract (99 %), and hydroalcoholic extract (27 %). Acyclovir had a slight virucidal activity on viral particle. The inhibition of attachment was performed in MDBK cells inoculated with 100 PFU of BoHV-5 RJ42/01 in the presence or absence of various concentrations of extracts (0.3, 0.9, and 1.5 μg mL?1). Acyclovir was also assayed at 2.8 and 11.25 μg mL?1. The inhibition of adsorption was also tested in MDBK cells treated with the same concentrations of the extracts before virus inoculation. Results: hexane extracts inhibited virus attachment in pre-treated cell 0.9 μg (55 %) and 1.5 μg (71 %) and untreated MDBK cell only with 1.5 μg (63 %). Ethyl acetate extract on cell pre-treated with 0.3 μg (67 %), 0.9 μg (81 %), and 1.5 μg (91 %). Ethyl acetate extract on pre-treated cell 0.3 μg (67 %), 0.9 μg (81 %), and 1.5 (91 %) but discrete inhibition on cell untreated. Dichloromethane extract and acyclovir slightly inhibited virus binding on MDBK cell.  相似文献   

11.
Glucosamine-6-phosphate (GlcN-6-P) synthase from Saccharomyces cerevisiae was expressed in Pichia pastoris SMD1168 GIVING maximum activity of 96 U ml?1 for the enzyme in the culture medium. By SDS-PAGE, the enzyme, a glycosylated protein, had an apparent molecular mass of 90 kDa. The enzyme was purified by gel exclusion chromatography to near homogeneity, with a 90 % yield and its properties were characterized. Optimal activities were at pH 5.5 and 55 °C, respectively, at which the highest specific activity was 6.8 U mg protein ?1. The enzyme was stable from pH 4.5 to 5.5 and from 45 to 60 °C. The Km and Vmax of the GlcN-6-P synthase towards d-fructose 6-phosphate were 2.8 mM and 6.9 μmol min?1 mg?1, respectively.  相似文献   

12.
Previously, we have reported the role of MAPKs (mitogen-activated protein kinases) under cadmium stress. This work continue to explore the relationship between MAPKs, H2O2, auxin signaling, and OsHMA and OsZIP gene expression in rice (Oryza sativa L.) roots under combined cadmium (Cd) and zinc (Zn) stress. Compared with Cd, Cd+Zn reduced Cd levels but increased Zn accumulation in the roots. Three OsMAPK genes were negatively regulated, while two OsHMA and two OsZIP genes were positively regulated by MAPK pathways under Cd+Zn stress. Transgenic rice expressing DR5-GUS exhibited enhanced GUS activity in H2O2-, PD (MAPKK inhibitor PD98059)-, or (Cd+Zn)-treated roots, which also exhibited increased H2O2 concentrations, whereas GUS staining decreased in roots in response to Cd+Zn+PD, DMTU (N,N′-dimethylthiourea, a H2O2 scavenger), or Cd+Zn+DMTU treatment, with reduced H2O2 levels. GUS levels were consistent with H2O2 levels, suggesting that MAPK pathway-mediated auxin redistribution occurs via H2O2, and H2O2 functions downstream of MAPK but upstream of auxin signaling pathways. Furthermore, MAPK pathways serve specific functions in regulating the expression of some key genes of auxin signaling (OsYUCCA, OsPIN, OsARF, and OsIAA) under Cd+Zn stress. Overall, MAPK cascades function in the integration of metal transport, H2O2 generation, and auxin signaling in rice seedlings grown under Cd+Zn stress.  相似文献   

13.
Pinene is a monoterpenes (C10) that is produced in a genetically-engineered microbial host for its industrial applications in fragrances, flavoring agents, pharmaceuticals, and biofuels. Herein, we have metabolically-engineered Corynebacterium glutamicum, to produce pinene and studied its toxicity in C. glutamicum. Geranyl diphosphate synthases (GPPS) and pinene synthases (PS), obtained from Pinus taeda and Abies grandis, were co-expressed with over-expressed native 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and isopentenyl diphosphate isomerase (Idi) from C. glutamicum using CoryneBrick vector. Most strains expressing PS-GPPSs produced detectable amounts of pinene, but co-expression of DXS and IDI with PS (P. taeda) and GPPS (A. grandis) resulted in 27 μg ± 7 α-pinene g?1 cell dry weight, which is the first report in C. glutamicum. Further engineering of PS and GPPS in the C. glutamicum strain may increase pinene production.  相似文献   

14.
Photosynthesis was affected considerably when the cultivars Zenith, Lacrosse, Usen and Co. 13 belonging to indica and japonica groups of rice were inoculated with physiological races IC13 and ID1 ofPyricularia oryzae Cav. The 21-day seedlings after inoculation withP. oryzae and uninoculated control were exposed to14CO2 under natural sunlight (190 Wm-2). The extent of reduction in photosynthetic rate in the cultivars varied on inoculation with different races ofP. oryzae used, the reduction being more apparent with race ID1.  相似文献   

15.
The effects of a bioinsecticide formulation based on extract of Annona squamosa L. (Annonaceae) containing 10,000 mg L?1 of acetogenin annonin as the main active ingredient were investigated against three primary pest species of stored grains in Brazil [maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), Mexican bean weevil Zabrotes subfasciatus (Boheman) (Coleoptera: Chrysomelidae: Bruchinae), and cowpea weevil Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae: Bruchinae)] by means of residual contact bioassays. In a concentration-dependent manner, the annonin-based commercial bioinsecticide caused significant adult mortality of C. maculatus (LC50 = 6890 μL kg?1), S. zeamais (LC50 = 2781 μL kg?1), and Z. subfasciatus (LC50 = 2120 μL kg?1) after 120 h of residual contact exposure. In addition to acute toxicity, the tested bioinsecticide also promoted a significant reduction of the number of eggs laid by females of C. maculatus (EC50 = 5949.7 μL kg?1) and Z. subfasciatus (EC50 = 552.7 μL kg?1). Moreover, the bioinsecticide significantly reduced the number of emerged insects (F1 generation) of C. maculatus (EC50 = 2763.0 μL kg?1), S. zeamais (EC50 = 1380.8 μL kg?1), and Z. subfasciatus (EC50 = 561.5 μL kg?1). The bioinsecticide also reduced the percentage of damaged grains for the three pest species studied, and its grain-protectant properties are comparable to or superior in efficacy in relation to a diatomaceous earth-based insecticide (Insecto® at 1000 mg kg?1) used as a positive control. Thus, this standardized formulation has promising bioactivity against stored insect species and can be a useful component for IPM of stored grains in Brazil and elsewhere.  相似文献   

16.
To explore how lead (Pb) and acid rain simultaneously affect plants, the combined effects of Pb and acid rain on the chlorophyll content, chlorophyll fluorescence reaction, Hill reaction rate, and Mg2+-ATPase activity in soybean seedlings were investigated. The results indicated that, when soybean seedlings were treated with Pb or acid rain alone, the chlorophyll content, Hill reaction rate, Mg2+-ATPase activity, and maximal photochemical efficiency (F v/F m) were decreased, while the initial fluorescence (F 0) and maximum quantum yield (Y) were increased, compared with those of the control. The combined treatment with Pb and acid rain decreased the chlorophyll content, Hill reaction rate, Mg2+-ATPase activity, F v/F m, and Y and increased F 0 in soybean seedlings. Under the combined treatment with Pb and acid rain, the two factors showed additive effects on the chlorophyll content in soybean seedlings and exhibited antagonistic effects on the Hill reaction rate. Under the combined treatment with high-concentration Pb and acid rain, the two factors exhibited synergistic effects on the Mg2+-ATPase activity, F 0, F v/F m, as well as Y. In summary, the inhibition of the photosynthetic process is an important physiological basis for the simultaneous actions of Pb and acid rain in soybean seedlings.  相似文献   

17.
Phenology, irradiance, and temperature characteristics of an edible brown alga, Undaria pinnatifida (Laminariales), were examined from the southernmost natural population in Japan, both by culturing gametophytes and examining the photosynthetic activity of sporophytes using dissolved oxygen sensors and pulse amplitude-modulated chlorophyll fluorometer (IMAGING-PAM). Our surveys confirmed that sporophytes were present between winter and early summer, but absent by July. IMAGING-PAM experiments were used to measure maximum effective quantum yield (ΦII at 0 μmol photons m?2 s?1) for each of 14 temperatures (8–36 °C). Oxygen production was also determined over a coarser temperature gradient. Net photosynthesis and ΦII (at 0 μmol photons m?2 s?1) were observed to be temperature-dependent; the maximum ΦII was estimated to be 0.67, occurred at 21.2 °C, and was nearly identical to the optimal temperature of the net photosynthetic rate (21.7 °C). A net photosynthesis–irradiance (P–E) model revealed that saturation irradiance (E k) was 119.5 μmol photons m?1 s?1, and the compensation irradiance (E c) was 17.4 μmol photons m?1 s?1. Culture experiments on the gametophytes revealed that most individuals could not survive temperatures over 28 °C and that growth rates were severely inhibited. Based on our observations, temperatures greater than 20 °C are likely to influence photosynthetic activity and gametophyte survival, and therefore, it is possible that this species might become locally extinct if seawater temperatures in this region continue to rise.  相似文献   

18.

Background and aims

Herbaspirillum seropedicae (Hs) Z67 a diazotrophic endophyte was genetically engineered for secretion of 2-keto-D-gluconic acid by heterologous expression of genes for pqq synthesis and gluconate dehydrogenase to study its beneficial effect on plants.

Methods

Two plasmids, pJNK5, containing a 5.1 Kb pqq gene cluster of Acinetobacter calcoaceticus and pJNK6, carrying in addition the Pseudomonas putida KT2440 gluconate dehydrogenase (gad) operon were constructed in pUCPM18Gmr under Plac promoter. H. seropedicae Z67 transformants were monitored for P and K solubilization, cadmium (Cd) tolerance and rice growth promotion.

Results

Hs (pJNK5) secreted 23.5 mM gluconic acid and Hs (pJNK6) secreted 3.79 mM gluconic acid and 15.8 mM 2-ketogluconic acid respectively. Under aerobic conditions, Hs (pJNK5) and Hs (pJNK6) solubilized 239.7 μM and 457.7 μM P on HEPES rock phosphate and, 76.7 μM and 222.7 μM K on HRPF (feldspar), respectively, in minimal medium containing 50 mM glucose. Under N free minimal medium, similar effects of P and K solubilization were obtained. Hs (pJNK5) and Hs (pJNK6) inoculation increased the biomass, N, P, K content of rice plants (Gujarat – 17). These plants also accumulated 0.73 ng/g PQQ, and had improved growth and tolerance to CdCl2.

Conclusions

Incorporation of pqq and gad gene clusters in H. seropedicae Z67 imparted additional plant growth promoting traits of P and K solubilization and ability to alleviate Cd toxicity to the host plant.
  相似文献   

19.
A highly efficient β-1,4-mannanase-secreting strain, Pholiota adiposa SKU0714, was isolated and identified on the basis of its morphological features and sequence analysis of internal transcribed spacer rDNA. P. adiposa β-1,4-mannanase was purified to homogeneity from P. adiposa culture supernatants by one-step chromatography on a Sephacryl gel filtration column. P. adiposa β-1,4-mannanase showed the highest activity toward locust bean gum (V max = 1,990 U/mg protein, K m = 0.12 mg/mL) ever reported. Its internal amino acid sequence showed homology with hydrolases from the glycoside hydrolase family 5 (GH5), indicating that the enzyme is a member of the GH5 family. The saccharification of commercial mannanase and P. adiposa β-1,4-mannanase-pretreated rice straw by Celluclast 1.5L (Novozymes) was compared. In comparison with the commercial Novo Mannaway® (113 mg/g-substrate), P. adiposa β-1,4-mannanase-pretreated rice straw released more reducing sugars (141 mg/g-substrate). These properties make P. adiposa β-1,4-mannanase a good candidate as a new commercial β-1,4-mannanase to improve biomass pretreatment.  相似文献   

20.
Interaction of DNA methylation and sequence variants that are methylation quantitative trait loci (mQTLs) may influence susceptibility to diseases such as alcohol dependence (AD). We used genome-wide genotype data from 268 African Americans (AAs: 129 AD cases and 139 controls) and 143 European Americans (EAs: 129 AD cases and 14 controls) to identify mQTLs that were associated with promoter CpGs in 82 AD risk genes. 282 significant mQTL–CpG pairs (9.9 × 10?100 ≤ P nominal ≤ 7.7 × 10?8) in AAs and 313 significant mQTL–CpG pairs (2.7 × 10?53 ≤ P nominal ≤ 9.9 × 10?8) in EAs were identified [i.e., mQTL–CpG associations survived multiple-testing correction, q values (false discovery rate) ≤ 0.05]. The most significant mQTL was rs1800759, which was strongly associated with CpG cg12011299 in both AAs (P nominal = 9.9 × 10?100; q = 6.7 × 10?91) and EAs (P nominal = 2.7 × 10?53; q = 1.4 × 10?44). Rs1800759 (previously known to be associated to AD) and CpG cg12011299 (distance: 37 bp) are both located in alcohol dehydrogenase (ADH) 4 gene (ADH4) promoter region. In general, the strength of association between mQTLs and CpGs was inversely correlated with the distance between them. Association was also influenced by race and AD. Additionally, 48.3 % of the mQTLs identified in AAs and 65.6 % of the mQTLs identified in EAs were predicted to be expression QTLs. Three mQTLs (rs2173201, rs4147542, and rs4147541 in ADH1B-AHD1C gene cluster region) found in AAs were previously identified by our genome-wide association studies as being significantly associated with AD in AAs. Thus, DNA methylation, which can be influenced by sequence variants and is implicated in gene expression regulation, appears to at least partially underlie the association of genetic variation with AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号