共查询到20条相似文献,搜索用时 0 毫秒
1.
Experiments were conducted to investigate the effects of exogenous progesterone on photochemical efficiency of PSII and turnover of D1 protein under heat stress during the grain-filling stage. Heat stress resulted in increases of hydrogen peroxide production, malondialdehyde content, and relative electrolytic leakage in wheat leaves, but these responses were alleviated by foliar application of progesterone. Meanwhile, activities of superoxide dismutase, catalase, and peroxidase were significantly improved in progesterone-pretreated leaves. Along with the alleviation of oxidative stress, higher abundances of STN8 and phosphorylated D1 protein and lower total D1 protein content in the PSII reactive center were observed in progesterone-pretreated leaves relative to controls. Consequently, progesterone raised the potential photochemical efficiency, actual photochemical efficiency, and electron transfer rate. These results indicate that foliar application of progesterone can effectively alleviate heat-induced PSII damage by enhancing antioxidant capability and regulating phosphorylation of D1 protein in wheat leaves. 相似文献
2.
Light, controls the “blueprint” for chloroplast development, but at high intensities is toxic to the chloroplast. Excessive
light intensities inhibit primarily photosystem II electron transport. This results in generation of toxic singlet oxygen
due to impairment of electron transport on the acceptor side between pheophytin and QB -the secondary electron acceptor. High light stress also impairs electron transport on the donor side of photosystem II generating
highly oxidizing species Z+ and P680+. A conformationsl change in the photosystem II reaction centre protein Dl affecting its QB-binding site is involved in turning the damaged protein into a substrate for proteolysis.
The evidence indicates that the degradation of D1 is an enzymatic process and the protease that degrades D1 protein has been
shown to be a serine protease Although there is evidence to indicate that the chlorophyll a-protein complex CP43 acts as a
serine-type protease degrading Dl, the observed degradation of Dl protein in photosystem II reaction centre particlesin vitro argues against the involvement of CP43 in Dl degradation. Besides the degradation during high light stress of Dl, and to
a lesser extent D2-the other reaction centre protein, CP43 and CP29 have also been shown to undergo degradation.
In an oxygenic environment, Dl is cleaved from its N-and C-termini and the disassembly of the photosystem II complex involves
simultaneous release of manganese and three extrinsic proteins involved in oxygen evolution. It is known that protein with
PEST sequences are subject to degradation; D1 protein contains a PEST sequence adjacent to the site of cleavage on the outer
side of thylakoid membrane between helices IV and V.
The molecular processes of “triggering” of Dl for proteolytic degradation are not clearly understood. The changes in structural
organization of photosystem II due to generation of oxy-radicals and other highly oxidizing species have also not been resolved.
Whether CP43 or a component of the photosystem II reaction centre itself (Dl. D2 or cy1 b559 subunits), which may be responsible
for degradation of Dl, is also subject to light modification to become an active protease, is also not known. The identity
of proteases degrading Dl, LHCII and CP43 and C29 remains to be established 相似文献
3.
4.
5.
Hui-Jie Zhao Xue-Juan Zhao Pei-Fang M Yue-Xia Wang Wei-Wei Hu Li-Hong Li Yi-Dan Zhao 《生态学报》2011,31(5):259-263
In the north of China, wheat plants are often stressed by heat and high light during grain-filling stage, which leads to injury in photosynthetic apparatus and decline in photosynthetic rate. In order to develop a method to protect photosynthetic apparatus in wheat leaves subjected to heat and high light stress, the effects of SA (salicylic acid) and FSBA (5′-p-fluorosulfonylbenzoyl adenosine) on PK (protein kinase) activity, D1 protein degradation and the performance of PSII were investigated in present work. Our results showed that PK activity enhanced under heat and high light stress and declined when stress was removed. FSBA pretreatment resulted in marked decreases in PK activity and D1 protein level, suggesting a correlationship between degradation of D1 protein and phosphorylation. After 2 h of stress, D1 protein level in water-pretreated leaves decreased to 79% of control and then recovered to 81% after 3 h of recovery. This clearly indicated that the damage of D1 protein induced by heat and high light stress was reversible. Compared to the control, SA pretreatment could not only increase PK activity, retard the degradation of D1 protein during heat and high light stress, but also accelerate the recovery of D1 protein level when the stress was removed. Correspondingly, Fv/Fm (maximum photochemical efficiency of PSII), ΦPSII (actual photochemical efficiency of PSII), ETR (electron transfer rate) and Pn (net photosynthetic rate) in SA-treated leaves were higher than that in leaves of control under both stress and non-stress conditions. Taken together, our results revealed that SA pretreatment could significantly alleviate damages of heat and high light stress on D1 protein and PSII of wheat leaves, and accelerate restoration of photosynthetic function. 相似文献
6.
Yuexia Wang Shuchun Liu Huanling Zhang Yidan Zhao Huijie Zhao Huashan Liu 《Acta Physiologiae Plantarum》2014,36(8):2195-2202
7.
Effects of salicylic acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress 下载免费PDF全文
In the north of China, wheat plants are often stressed by heat and high light during grain-filling stage, which leads to injury in photosynthetic apparatus and decline in photosynthetic rate. In order to develop a method to protect photosynthetic apparatus in wheat leaves subjected to heat and high light stress, the effects of SA (salicylic acid) and FSBA (5′-p-fluorosulfonylbenzoyl adenosine) on PK (protein kinase) activity, D1 protein degradation and the performance of PSII were investigated in present work. Our results showed that PK activity enhanced under heat and high light stress and declined when stress was removed. FSBA pretreatment resulted in marked decreases in PK activity and D1 protein level, suggesting a correlationship between degradation of D1 protein and phosphorylation. After 2 h of stress, D1 protein level in water-pretreated leaves decreased to 79% of control and then recovered to 81% after 3 h of recovery. This clearly indicated that the damage of D1 protein induced by heat and high light stress was reversible. Compared to the control, SA pretreatment could not only increase PK activity, retard the degradation of D1 protein during heat and high light stress, but also accelerate the recovery of D1 protein level when the stress was removed. Correspondingly, Fv/Fm (maximum photochemical efficiency of PSII), ΦPSII (actual photochemical efficiency of PSII), ETR (electron transfer rate) and Pn (net photosynthetic rate) in SA-treated leaves were higher than that in leaves of control under both stress and non-stress conditions. Taken together, our results revealed that SA pretreatment could significantly alleviate damages of heat and high light stress on D1 protein and PSII of wheat leaves, and accelerate restoration of photosynthetic function. 相似文献
8.
9.
The physiological significance of photosystem II (PSII) core protein phosphorylation has been suggested to facilitate the migration of oxidative damaged D1 and D2 proteins, but meanwhile the phosphorylation seems to be associated with the suppression of reactive oxygen species (ROS) production, and it also relates to the degradation of PSII reaction center proteins. To more clearly elucidate the possible protecting effect of the phosphorylation on oxidative damage of D1 protein, the degradation of oxidized D1 protein and the production of superoxide anion in the non-phosphorylated and phosphorylated PSII membranes were comparatively detected using the Western blotting and electron spin resonance spin-trapping technique, respectively. Obviously, all of three ROS components, including superoxide anion, hydrogen peroxide and hydroxyl radical are responsible for the degradation of oxidized D1 protein, and the protection of the D1 protein degradation by phosphorylation is accompanied by the inhibition of superoxide anion production. Furthermore, the inhibiting effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a competitor to Q(B), on superoxide anion production and its protecting effect on D1 protein degradation are even more obvious than those of phosphorylation. Both DCMU effects are independent of whether PSII membranes are phosphorylated or not, which reasonably implies that the herbicide DCMU and D1 protein phosphorylation probably share the same target site in D1 protein of PSII. So, altogether it can be concluded that the phosphorylation of D1 protein reduces the oxidative damage of D1 protein by decreasing the production of superoxide anion in PSII membranes under high light. 相似文献
10.
Zhang D Zhou G Liu B Kong Y Chen N Qiu Q Yin H An J Zhang F Chen F 《Plant physiology》2011,157(2):608-619
Numerous auxiliary nuclear factors have been identified to be involved in the dynamics of the photosystem II (PSII) complex. In this study, we characterized the high chlorophyll fluorescence243 (hcf243) mutant of Arabidopsis (Arabidopsis thaliana), which shows higher chlorophyll fluorescence and is severely deficient in the accumulation of PSII supercomplexes compared with the wild type. The amount of core subunits was greatly decreased, while the outer antenna subunits and other subunits were hardly affected in hcf243. In vivo protein-labeling experiments indicated that the synthesis rate of both D1 and D2 proteins decreased severely in hcf243, whereas no change was found in the rate of other plastid-encoded proteins. Furthermore, the degradation rate of the PSII core subunit D1 protein is higher in hcf243 than in the wild type, and the assembly of PSII is retarded significantly in the hcf243 mutant. HCF243, a nuclear gene, encodes a chloroplast protein that interacts with the D1 protein. HCF243 homologs were identified in angiosperms with one or two copies but were not found in lower plants and prokaryotes. These results suggest that HCF243, which arose after the origin of the higher plants, may act as a cofactor to maintain the stability of D1 protein and to promote the subsequent assembly of the PSII complex. 相似文献
11.
Gamma-aminobutyric acid (GABA) is a non-protein amino acid that accumulates in a number of plant species under various environmental stresses. In this paper, the ability of applied GABA for the alleviation of NaCl stress was investigated in view of growth parameters, gas exchange, photosynthetic pigments, chlorophyll fluorescence, activities of antioxidant enzymes, malondialdehyde (MDA) content, and electrolyte conductivity (REC) in wheat seedlings. Germination rate and shoot dry mass decreased with an increasing NaCl concentration and this decrease was less pronounced when 0.5 mM GABA was applied. In the NaCl-treated seedlings, exogenous GABA partially enhanced photosynthetic capacity and antioxidant enzyme activities and decreased MDA content and REC. Therefore, GABA reduced the impact of salinity on the wheat seedlings. 相似文献
12.
Mikko Tikkanen 《BBA》2008,1777(11):1432-1437
Phosphorylation of photosystem II (PSII) reaction center protein D1 has been hypothesised to function as a signal for the migration of photodamaged PSII core complex from grana membranes to stroma lamellae for concerted degradation and replacement of the photodamaged D1 protein. Here, by using the mutants with impaired capacity (stn8) or complete lack (stn7 stn8) in phosphorylation of PSII core proteins, the role of phosphorylation in PSII photodamage and repair was investigated. We show that the lack of PSII core protein phosphorylation disturbs the disassembly of PSII supercomplexes at high light, which is a prerequisite for efficient migration of damaged PSII complexes from grana to stroma lamellae for repair. This results in accumulation of photodamaged PSII complexes, which in turn results, upon prolonged exposure to high light (HL), in general oxidative damage of photosynthetic proteins in the thylakoid membrane. 相似文献
13.
Co-translational assembly of the D1 protein into photosystem II. 总被引:9,自引:0,他引:9
L Zhang V Paakkarinen K J van Wijk E M Aro 《The Journal of biological chemistry》1999,274(23):16062-16067
Assembly of multi-subunit membrane protein complexes is poorly understood. In this study, we present direct evidence that the D1 protein, a multiple membrane spanning protein, assembles co-translationally into the large membrane-bound complex, photosystem II. During pulse-chase studies in intact chloroplasts, incorporation of the D1 protein occurred without transient accumulation of free labeled protein in the thylakoid membrane, and photosystem II subcomplexes contained nascent D1 intermediates of 17, 22, and 25 kDa. These N-terminal D1 intermediates could be co-immunoprecipitated with antiserum directed against the D2 protein, suggesting co-translational assembly of the D1 protein into PS II complexes. Further evidence for a co-translational assembly of the D1 protein into photosystem II was obtained by analyzing ribosome nascent chain complexes liberated from the thylakoid membrane after a short pulse labeling. Radiolabeled D1 intermediates could be immunoprecipitated under nondenaturing conditions with antisera raised against the D1 and D2 protein as well as CP47. However, when the ribosome pellets were solubilized with SDS, the interaction of these intermediates with CP47 was completely lost, but strong interaction of a 25-kDa D1 intermediate with the D2 protein still remained. Taken together, our results indicate that during the repair of photosystem II, the assembly of the newly synthesized D1 protein into photosystem II occurs co-translationally involving direct interaction of the nascent D1 chains with the D2 protein. 相似文献
14.
The effect of high light on the acceptor side of photosystem II of chloroplasts and core particles of spinach was studied.
BothV
max and apparentK
m for DCIP were altered in photoinhibited photosystem II core particles. The double reciprocal plot analysis as a function
of actinic light showed increased slope in chloroplasts photoinhibited in the presence of DCMU. Exposure of chloroplasts to
high light in the presence of DCMU did not protect the chloroplast against high light induced decrease in Fm, level. Further the high light stress induced decrease inF
m level was not restored by the addition of DCMU. These results suggest that the high light stress induced damage to chloroplast
involves alteration in the binding site forQ
B on the DI protein on the acceptor side of photosystem II 相似文献
15.
In spinach thylakoids, the quenching of the singlet excited state in the photosystem II antenna by m-dinitrobenzene does not change the rate of the light induced degradation of the D1 reaction centre protein and offers only limited protection against photoinhibition itself. These results are discussed in terms of the role of non-photochemical quenching as a photoprotective strategy. 相似文献
16.
WN6 (a stay-green wheat cultivar) and JM20 (control) were used to evaluate the effects of exogenous cytokinin on photosynthetic capacity and antioxidant enzymes activities in flag leaves. Results showed that WN6 reached the higher grain mass, which was mainly due to the higher photosynthetic rate resulting from the higher maximal quantum yield of PSII photochemistry (ΦPSII) and probability that a trapped exaction transfers an electron into the electron transport chain beyond QA (Ψo), and lower relative variable fluorescence intensity at the J-step (Vj). Exogenous 6-benzylaminopurine (6-BA) enhanced antioxidant enzymes activities and decreased malondialdehyde (MDA) content. Enhanced Ψo and electron transport rate (ETR), and decreased Vj contributed to improved photosynthetic rate in the 6-BA treatment. In addition, exogenous 6-BA significantly increased endogenous zeatin (Zt) content, which was significantly and positively correlated with the antioxidant enzyme activity and ΦPSII, implying that higher Zt content was responsible for the improved antioxidant status and photosynthetic performance. 相似文献
17.
18.
Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings 总被引:1,自引:0,他引:1
Y. E. Chen J. M. Cui G. X. Li M. Yuan Z. W. Zhang S. Yuan H. Y. Zhang 《Biologia Plantarum》2016,60(1):139-147
To study the effects of application of salicylic acid (SA) on the antioxidant system and photosystem II (PS II) in wheat seedlings we used two different experiments. The first method was carried out by immersing roots in Hoagland’s nutrient solution containing 0, 0.25, or 2.5 mM SA, and the second method was performed by spraying two-week-old seedlings with the same SA concentrations. After 24 h, chlorophyll fluorescence, thylakoid membrane proteins, antioxidant enzyme activities, and reactive oxygen species were measured. The low concentration of SA caused a significant increase in the antioxidant enzyme activities. However, the treatment with 2.5 mM SA resulted in an increase in the non-photochemical quenching coefficient and a decrease in the antioxidant enzyme activities, the quantum yield of PS II photochemistry, and the photochemical quenching, especially in the first method of application. All these results indicate that the effects of SA on PS II and the antioxidative defense system were dependent on the concentration used and the method of application. 相似文献
19.
Yamamoto Y Aminaka R Yoshioka M Khatoon M Komayama K Takenaka D Yamashita A Nijo N Inagawa K Morita N Sasaki T Yamamoto Y 《Photosynthesis research》2008,98(1-3):589-608
Photosystem II is vulnerable to various abiotic stresses such as strong visible light and heat. Under both stresses, the damage seems to be triggered by reactive oxygen species, and the most critical damage occurs in the reaction center-binding D1 protein. Recent progress has been made in identifying the protease involved in the degradation of the photo- or heat-damaged D1 protein, the ATP-dependent metalloprotease FtsH. Another important result has been the discovery that the damaged D1 protein aggregates with nearby polypeptides such as the D2 protein and the antenna chlorophyll-binding protein CP43. The degradation and aggregation of the D1 protein occur simultaneously, but the relationship between the two is not known. We suggest that phosphorylation and dephosphorylation of the D1 protein, as well as the binding of the extrinsic PsbO protein to Photosystem II, play regulatory roles in directing the damaged D1 protein to the two alternative pathways. 相似文献
20.
To elucidate the resistance mechanism of exogenous trehalose on water deficit further, we investigated the effect of exogenous trehalose (50 mM) in wheat callus during water deficit and subsequent recovery. Enhanced levels of endogenous trehalose were detected in calli exposed to water deficit (W) and trehalose (T) medium, moreover, W plus T treatment showed an additive effect. Water deficit elevated the accumulation of ROS (hydrogen peroxide and formation rate of O 2 .? ) and the endogenous MDA (Malonaldehyde), and resulted in the decrease of cell viability and biomass. Exogenous trehalose (TW) could alleviate the damage induced by water deficit, which was involved in the decrease of MDA and the generation of ROS, and resulted in elevating cell viability and biomass. Additionally, water deficit induced activity of antioxidative enzymes (Peroxidase, POD; Catalase, CAT; Glutathione reductase, GR). Content of AsA (Reduced ascorbate) was also increased by water deficit, while the content of GSH (Glutathione) showed the opposite effect. The combined effect of T and W treatment led to a higher activity of enzymatic antioxidants including SOD (Superoxide dismutase) and GR, and elevated the content of nonenzymatic antioxidants including AsA and GSH, but had a negative effect on enzymatic antioxidants including POD and CAT in comparison to the water deficit treatment alone. During recovery, calli treated by TW showed a greater reduction in ROS resulted in enhancing a higher cell viability and biomass. The scavenging mechanism of ROS by exogenous trehalose is mainly dependent on nonenzymatic antioxidants, especially AsA-GSH cycle, rather than enzymatic mechanisms and trehalose itself. 相似文献