首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
We examined temporal and spatial changes in the subepithelial mesenchymal cell process meshwork (CPM) in normally developing medial (MNP) and lateral nasal prominences (LNP) in mouse embryos by light and scanning electron microscopy. Marked changes were found only in the MNP during the fusion of the MNP and LNP. The CPM density in the prospective fusion area of the MNP gradually increased as the epithelial surfaces approached each other, attained its maximum just before contact, and decreased after contact. The CPM density in the prospective fusion area of the LNP changed only slightly even when the epithelial surfaces approached each other. The increase in CPM density paralleled that in the density of mesenchymal cell bodies. The LNP grew more actively toward the line of fusion than did the MNP during the progressive fusion of the two prominences. A larger number of fusion-associated epithelial morphological changes--the appearance of superficial protruding cells and cell degeneration--occurred in the MNP than in the LNP. These findings suggest that the increased CPM density is closely related to the growth of the facial prominences and the fusion-associated epithelial morphology and that the CPM plays an important role in the epithelial-mesenchymal interaction during the formation of the upper lip and primary palate.  相似文献   

3.
Distinct functions for Bmp signaling in lip and palate fusion in mice   总被引:8,自引:0,他引:8  
Previous work suggested that cleft lip with or without cleft palate (CL/P) is genetically distinct from isolated cleft secondary palate (CP). Mutations in the Bmp target gene Msx1 in families with both forms of orofacial clefting has implicated Bmp signaling in both pathways. To dissect the function of Bmp signaling in orofacial clefting, we conditionally inactivated the type 1 Bmp receptor Bmpr1a in the facial primordia, using the Nestin cre transgenic line. Nestin cre; Bmpr1a mutants had completely penetrant, bilateral CL/P with arrested tooth formation. The cleft secondary palate of Nestin cre; Bmpr1a mutant embryos was associated with diminished cell proliferation in maxillary process mesenchyme and defective anterior posterior patterning. By contrast, we observed elevated apoptosis in the fusing region of the Nestin cre; Bmpr1a mutant medial nasal process. Moreover, conditional inactivation of the Bmp4 gene using the Nestin cre transgenic line resulted in isolated cleft lip. Our data uncover a Bmp4-Bmpr1a genetic pathway that functions in lip fusion, and reveal that Bmp signaling has distinct roles in lip and palate fusion.  相似文献   

4.
5.
Members of the FGF family play diverse roles in patterning, cell proliferation and differentiation during embryogenesis. To begin to address their function during craniofacial development we have analyzed the expression of 18 members of the Fgf family (Fgf1-15, -17, -18 and -20) and the four members of the FGF-receptor family in the prospective midfacial region between E9.5 and E11.5 by whole-mount in situ hybridization. We show that at E9.5, Fgf3, -8, -9, -10 and -17 are broadly expressed in midfacial ectoderm. Concomitant with the outgrowth of the nasal processes at E10.5, expression of Fgf3, -8, -9, -10, -15, -17 and -18 was detected in spatially restricted regions of ectoderm at the edge of the nasal pit and at the oral edge of the medial nasal process. Expression of Fgf8, Fgf9, Fgf10 and Fgf17 was still observed in these domains at E11.5. In contrast to the restricted expression patterns of the ligands, FgfR1 and FgfR2 were broadly expressed in facial mesenchyme and ectoderm, respectively, indicating a wide competence of midfacial tissue to respond to FGF signaling.  相似文献   

6.
Cleft palate, the most frequent congenital craniofacial birth defects in humans, arises from genetic or environmental perturbations in the multi-step process of palate development. Mutations in the MSX1 homeobox gene are associated with non-syndromic cleft palate and tooth agenesis in humans. We have used Msx1-deficient mice as a model system that exhibits severe craniofacial abnormalities, including cleft secondary palate and lack of teeth, to study the genetic regulation of mammalian palatogenesis. We found that Msx1 expression was restricted to the anterior of the first upper molar site in the palatal mesenchyme and that Msx1 was required for the expression of Bmp4 and Bmp2 in the mesenchyme and Shh in the medial edge epithelium (MEE) in the same region of developing palate. In vivo and in vitro analyses indicated that the cleft palate seen in Msx1 mutants resulted from a defect in cell proliferation in the anterior palatal mesenchyme rather than a failure in palatal fusion. Transgenic expression of human Bmp4 driven by the mouse Msx1 promoter in the Msx1(-/-) palatal mesenchyme rescued the cleft palate phenotype and neonatal lethality. Associated with the rescue of the cleft palate was a restoration of Shh and Bmp2 expression, as well as a return of cell proliferation to the normal levels. Ectopic Bmp4 appears to bypass the requirement for Msx1 and functions upstream of Shh and Bmp2 to support palatal development. Further in vitro assays indicated that Shh (normally expressed in the MEE) activates Bmp2 expression in the palatal mesenchyme which in turn acts as a mitogen to stimulate cell division. Msx1 thus controls a genetic hierarchy involving BMP and Shh signals that regulates the growth of the anterior region of palate during mammalian palatogenesis. Our findings provide insights into the cellular and molecular etiology of the non-syndromic clefting associated with Msx1 mutations.  相似文献   

7.
8.
Cleft palate, including submucous cleft palate, is among the most common birth defects in humans. While overt cleft palate results from defects in growth or fusion of the developing palatal shelves, submucous cleft palate is characterized by defects in palatal bones. In this report, we show that the Bmpr1a gene, encoding a type I receptor for bone morphogenetic proteins (Bmp), is preferentially expressed in the primary palate and anterior secondary palate during palatal outgrowth. Following palatal fusion, Bmpr1a mRNA expression was upregulated in the condensed mesenchyme progenitors of palatal bone. Tissue-specific inactivation of Bmpr1a in the developing palatal mesenchyme in mice caused reduced cell proliferation in the primary and anterior secondary palate, resulting in partial cleft of the anterior palate at birth. Expression of Msx1 and Fgf10 was downregulated in the anterior palate mesenchyme and expression of Shh was downregulated in the anterior palatal epithelium in the Bmpr1a conditional mutant embryos, indicating that Bmp signaling regulates mesenchymal-epithelial interactions during palatal outgrowth. In addition, formation of the palatal processes of the maxilla was blocked while formation of the palatal processes of the palatine was significantly delayed, resulting in submucous cleft of the hard palate in the mutant mice. Our data indicate that Bmp signaling plays critical roles in the regulation of palatal mesenchyme condensation and osteoblast differentiation during palatal bone formation.  相似文献   

9.
Members of the FGF family play diverse roles in patterning, cell proliferation and differentiation during embryogenesis. To begin to address their function during craniofacial development we have analyzed the expression of 18 members of the Fgf family (Fgf1-15, -17, -18 and -20) and the four members of the FGF-receptor family in the prospective midfacial region between E9.5 and E11.5 by whole-mount in situ hybridization. We show that at E9.5, Fgf3, -8, -9, -10 and -17 are broadly expressed in midfacial ectoderm. Concomitant with the outgrowth of the nasal processes at E10.5, expression of Fgf3, -8, -9, -10, -15, -17 and -18 was detected in spatially restricted regions of ectoderm at the edge of the nasal pit and at the oral edge of the medial nasal process. Expression of Fgf8, Fgf9, Fgf10 and Fgf17 was still observed in these domains at E11.5. In contrast to the restricted expression patterns of the ligands, FgfR1 and FgfR2 were broadly expressed in facial mesenchyme and ectoderm, respectively, indicating a wide competence of midfacial tissue to respond to FGF signaling.  相似文献   

10.
Palatogenesis is a complex process implying growth, elevation and fusion of the two lateral palatal shelves during embryogenesis. This process is tightly controlled by genetic and mechanistic cues that also coordinate the growth of other orofacial structures. Failure at any of these steps can result in cleft palate, which is a frequent craniofacial malformation in humans. To understand the etiology of cleft palate linked to the BMP signaling pathway, we studied palatogenesis in Bmp7-deficient mouse embryos. Bmp7 expression was found in several orofacial structures including the edges of the palatal shelves prior and during their fusion. Bmp7 deletion resulted in a general alteration of oral cavity morphology, unpaired palatal shelf elevation, delayed shelf approximation, and subsequent lack of fusion. Cell proliferation and expression of specific genes involved in palatogenesis were not altered in Bmp7-deficient embryos. Conditional ablation of Bmp7 with Keratin14-Cre or Wnt1-Cre revealed that neither epithelial nor neural crest-specific loss of Bmp7 alone could recapitulate the cleft palate phenotype. Palatal shelves from mutant embryos were able to fuse when cultured in vitro as isolated shelves in proximity, but not when cultured as whole upper jaw explants. Thus, deformations in the oral cavity of Bmp7-deficient embryos such as the shorter and wider mandible were not solely responsible for cleft palate formation. These findings indicate a requirement for Bmp7 for the coordination of both developmental and mechanistic aspects of palatogenesis.  相似文献   

11.
Morphogenesis of mammalian facial processes requires coordination of cellular proliferation, migration, and apoptosis to develop intricate features. Cleft lip and/or palate (CL/P), the most frequent human craniofacial birth defect, can be caused by perturbation of any of these programs. Mutations of?WNT, P63, and IRF6 yield CL/P in humans and mice; however, how these genes are regulated remains elusive. We generated mouse lines lacking Pbx genes in cephalic ectoderm and demonstrated that they exhibit fully penetrant CL/P and perturbed Wnt signaling. We also characterized a midfacial regulatory element that Pbx proteins bind to control the expression of Wnt9b-Wnt3, which in turn regulates p63. Altogether, we establish a Pbx-dependent Wnt-p63-Irf6 regulatory module in midfacial ectoderm that is conserved within mammals. Dysregulation of this network leads to localized suppression of midfacial apoptosis and CL/P. Ectopic Wnt ectodermal expression in Pbx mutants rescues the clefting, opening avenues for tissue repair.  相似文献   

12.
We isolated mesenchymal cells from individual facial primordia of mouse embryos on 11 days post coitum and examined the effects of retinoic acid (RA) on chondrogenesis, induction of cell death, and the protein expression of retinoic acid receptor (RAR) β and γ in micromass culture. Under the control condition, cells of both medial and lateral nasal prominences (MNP and LNP) displayed high chondrogenic potential, while those of maxillary and mandibular prominences (Mx and Md) had constant growth activity and low chondrogenic potential. Though none of the cells expressed detectable levels of the RAR β protein, RAR γ was expressed in the cells of all the facial primordia. One μM RA inhibited the chondrogenesis, and induced cell death accompanied with the induction of the RAR β protein in LNP, MX and Md cells within 6 hr. On the contrary, both cell death and RAR β protein induction were detected in the MNP cells treated with RA for 24 hr. These results suggest that the RAR β is involved in the process of the cell death induced by the RA treatment in the mesenchymal cells of the mouse facial primordia.  相似文献   

13.
14.
Congenital bony syngnathia, a rare but severe human birth defect, is characterized by bony fusion of the mandible to the maxilla. However, the genetic mechanisms underlying this birth defect are poorly understood, largely due to limitation of available animal models. Here we present evidence that transgenic expression of Bmp4 in neural crest cells causes a series of craniofacial malformations in mice, including a bony fusion between the maxilla and hypoplastic mandible, resembling the bony syngnathia syndrome in humans. In addition, the anterior portion of the palatal shelves emerged from the mandibular arch instead of the maxilla in the mutants. Gene expression assays showed an altered expression of several facial patterning genes, including Hand2, Dlx2, Msx1, Barx1, Foxc2 and Fgf8, in the maxillary and mandibular processes of the mutants, indicating mis-patterned cranial neural crest (CNC) derived cells in the facial region. However, despite of formation of cleft palate and ectopic cartilage, forced expression of a constitutively active form of BMP receptor-Ia (caBmprIa) in CNC lineage did not produce the syngnathia phenotype, suggesting a non-cell autonomous effect of the augmented BMP4 signaling. Our studies demonstrate that aberrant BMP4-mediated signaling in CNC cells leads to mis-patterned facial skeleton and congenital bony syngnathia, and suggest an implication of mutations in BMP signaling pathway in human bony syngnathia.  相似文献   

15.
Craniofacial morphogenesis is a complex multi-step process that involves numerous biological processes to coordinate the growth, proliferation, migration, and subsequent differentiation of the cranial neural crest cells. Members of the Fibronectin Leucine-Rich Transmembrane (Flrt) gene family have been previously reported to be widely expressed in the developing embryo. We mapped the expression of Flrt2 and Flrt3 at critical stages of craniofacial development and found that, during early craniofacial development, Flrt2 was highly expressed initially in the cranial neural crest cells and Flrt3 in the midbrain. Later both genes were expressed in the developing pharyngeal region. Flrt2 expression predominated in the neural crest-derived mesenchyme in the medial aspect of the developing frontonasal region in close relationships with the expression of Fgfr2, Shh, and Msx1, three genes shown previously to play critical roles in craniofacial development. Flrt2 was also present in the vomero-nasal organ, mandibular primodia, and the posterior aspects of the unfused and fused secondary palatal shelves. Flrt3, however, had a more restrictive expression, being present in the mesenchyme underlying the ectoderm of the medial nasal process and in the mandibular primordium and in regions undergoing outgrowth, in a pattern that overlapped with Bmp4 expression. Both Flrt2 and Flrt3 were later found to be present at sites of epithelial–mesenchymal interactions such as the developing tooth buds, hair follicles, and eye. Together the data suggested important roles for Flrt2 and Flrt3 in mediating events such as NCC migration, chondrogenesis and epithelial–mesenchymal interactions during craniofacial development.  相似文献   

16.
17.
Mammalian palate development is a multistep process, involving initial bilateral downward outgrowth of the palatal shelves from the oral side of the maxillary processes, followed by stage-specific palatal shelf elevation to the horizontal position above the developing tongue and subsequent fusion of the bilateral palatal shelves at the midline to form the intact roof of the oral cavity. While mutations in many genes have been associated with cleft palate pathogenesis, the molecular mechanisms regulating palatal shelf growth, patterning, and elevation are not well understood. Genetic studies of the molecular mechanisms controlling palate development in mutant mouse models are often complicated by early embryonic lethality or gross craniofacial malformation. We report here the development of a mouse strain for tissue-specific analysis of gene function in palate development. We inserted an IresCre bicistronic expression cassette into the 3' untranslated region of the mouse Osr2 gene through gene targeting. We show, upon crossing to the R26R reporter mice, that Cre expression from the Osr2(IresCre) knockin allele activated beta-galactosidase expression specifically throughout the developing palatal mesenchyme from the onset of palatal shelf outgrowth. In addition, the Osr2(IresCre) mice display exclusive Cre-mediated recombination in the glomeruli tissues derived from the metanephric mesenchyme and complete absence of Cre activity in other epithelial and mesenchymal tissues in the developing metanephric kidney. These data indicate that the Osr2(IresCre) knockin mice provide a unique tool for tissue-specific studies of the molecular mechanisms regulating palate and kidney development.  相似文献   

18.

BACKGROUND

Folic acid is essential for the development of the nervous system and other associated structures. Mice deficient in the folic acid‐binding protein one (Folbp1) gene display multiple developmental abnormalities, including neural and craniofacial defects. To better understand potential interactions between Folbp1 gene and selected genes involved in neural and craniofacial morphogenesis, we evaluated the expression patterns of a panel of crucial differentiation markers (Pax‐3, En‐2, Hox‐a1, Shh, Bmp‐4, Wnt‐1, and Pax‐1).

METHODS

Folbp1 mice were supplemented with low dosages of folinic acid to rescue nullizygotes from dying in utero before gestational day 10. The gene marker analyses were carried out by in situ hybridization.

RESULTS

In nullizygote embryos with open cranial neural tube defects, the downregulation of Pax‐3 and En‐2 in the impaired midbrain, along with an observed upregulation of the ventralizing marker Shh in the expanded floor plate, suggested an important regulatory interaction among these three genes. Moreover, the nullizygotes also exhibit craniofacial abnormalities, such as cleft lip and palate. Pax‐3 signals in the impaired medial nasal primordia were significantly increased, whereas Pax‐1 showed no expression in the undeveloped lateral nasal processes. Although Shh was downregulated, Bmp‐4 was strongly expressed in the medial and lateral nasal processes, highlighting the antagonistic activities of these molecules.

CONCLUSIONS

Impairment of Folbp1 gene function adversely impacts the expression of several critical signaling molecules. Mis‐expression of these molecules, perhaps mediated by Shh, may potentially contribute to the observed failure of neural tube closure and the development of craniofacial defects in the mutant mice. Birth Defects Research (Part A) 67:209–218, 2003. © 2003 Wiley‐Liss, Inc.
  相似文献   

19.
The most rostral cephalic crest cells in the chick embryo first populate ubiquitously in the rostroventral head. Before the influx of crest cells, the ventral head ectoderm expresses Fgf8 in two domains that correspond to the future mandibular arch. Bmp4 is expressed rostral and caudal to these domains. The rostral part of the Bmp4 domain develops into the rostral end of the maxillary process that corresponds to the transition between the maxillomandibular and premandibular regions. Thus, the distribution patterns of FGF8 and BMP4 appear to foreshadow the maxillomandibular region in the head ectoderm. In the ectomesenchyme of the pharyngula embryo, expression patterns of some homeobox genes overlap the distribution of their upstream growth factors. Dlx1 and Barx1, the targets of FGF8, are expressed in the mandibular ectomesenchyme, and Msx1, the target of BMP4, in its distal regions. Ectopic applications of FGF8 lead to shifted expression of the target genes as well as repatterning of the craniofacial primordia and of the trigeminal nerve branches. Focal injection of a lipophilic dye, DiI, showed that this shift was at least in part due to the posterior transformation of the original premandibular ectomesenchyme into the mandible, caused by the changed distribution of FGF8 that defines the mandibular region. We conclude that FGF8 in the early ectoderm defines the maxillomandibular region of the prepharyngula embryo, through epithelial-mesenchymal interactions and subsequent upregulation of homeobox genes in the local mesenchyme. BMP4 in the ventral ectoderm appears to limit the anterior expression of Fgf8. Ectopic application of BMP4 consistently diminished part of the mandibular arch.  相似文献   

20.
The cranial airways are in the center of the human face. Therefore variation in the size and shape of these central craniofacial structures could have important consequences for the surrounding midfacial morphology during development and evolution. Yet such interactions are unclear because one school of thought, based on experimental and developmental evidence, suggests a relative independence (modularity) of these two facial compartments, whereas another one assumes tight morphological integration. This study uses geometric morphometrics of modern humans (N = 263) and 40 three‐dimensional‐landmarks of the skeletal nasopharynx and nasal cavity and outer midfacial skeleton to analyze these questions in terms of modularity. The sizes of all facial compartments were all strongly correlated. Shape integration was high between the cranial airways and the outer midfacial skeleton and between the latter and the anterior airway openings (skeletal regions close to and including piriform aperture). However, no shape integration was detected between outer midface and posterior airway openings (nasopharynx and choanae). Similarly, no integration was detected between posterior and anterior airway openings. This may reflect functional modularization of nasal cavity compartments related to respiratory physiology and differential developmental interactions with the face. Airway size likely relates to the energetics of the organism, whereas airways shape might be more indicative of respiratory physiology and climate. Although this hypothesis should be addressed in future steps, here we suggest that selection on morphofunctional characteristics of the cranial airways could have cascading effects for the variation, development, and evolution of the human face. Am J Phys Anthropol 152:287–293, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号