首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scott A  Wang Z 《Bioscience reports》2011,31(5):303-307
It has long been thought that PTPs (protein tyrosine phosphatases) normally function as tumour suppressors. Recent high-throughput mutational analysis identified loss-of-function mutations in six PTPs in human colon cancers, providing critical cancer genetics evidence that PTPs can act as tumour suppressor genes. PTPRT (protein tyrosine phosphatase receptor-T), a member of the family of type?IIB receptor-like PTPs, is the most frequently mutated PTP among them. Consistent with the notion that PTPRT is a tumour suppressor, PTPRT knockout mice are hypersensitive to AOM (azoxymethane)-induced colon cancer. The present review focuses on the physiological and pathological functions of PTPRT as well as the cellular pathways regulated by this phosphatase.  相似文献   

2.
A series of novel fluorescein monophosphates aimed as substrates for protein tyrosine phosphatases (PTPs) were synthesized and evaluated against fluorescein diphosphate (FDP), the currently used fluorescent substrate for PTPs. In contrast to FDP, which is dephosphorylated to monophosphate and then to fluorescein in a sequential reaction, these monophosphates are dephosphorylated in a single step. This eliminates the complication in assaying PTPs due to the cleavage of the second phosphate group. The kinetic studies of these substrates with PTPs were performed and Michaelis-Menten parameters were obtained. These designed substrates have Km 0.03-0. 35 mM, kcat/Km of 3-100 mM-1 s-1 with CD45 and PTP1B. The results showed that the substrates with negative charge groups on the fluorescein have higher affinities for PTP1B, which are consistent with other observations. In this series, fluorescein monosulfate monophosphate (FMSP) was the best substrate observed. Since FMSP showed large increases in both absorption and fluorescence upon dephosphorylation by PTPs at pH>6.0, it is one of the most sensitive, stable and high affinity substrates reported for PTPs.  相似文献   

3.
Protein tyrosine phosphatases (PTPs) constitute a large family of enzymes that play key roles in cell signaling. Deregulation of PTP activity results in aberrant tyrosine phosphorylation, which has been linked to the etiology of several human diseases, including cancer. Since phosphate removal by the PTPs can both enhance and antagonize cellular signaling, it is essential to elucidate the physiological context in which PTPs operate. Two powerful proteomic approaches have been developed to rapidly establish the exact functional roles for every PTP, both in normal cellular physiology and in pathogenic conditions. In the first, an affinity-based substrate-trapping approach has been employed for PTP substrate identification. Identification and characterization of specific PTP-substrate interactions will associate functions with PTP as well as implicate PTP to specific signaling pathways. In the second, a number of activity-based PTP probes have been developed that can provide a direct readout of the functional state of the PTPs in complex proteomes. The ability to profile the entire PTP family on the basis of changes in their activity is expected to yield new functional insights into pathways regulated by the PTPs and contribute to the discovery of PTPs as novel therapeutic targets. Effective application of these proteomic techniques will accelerate the functional characterization of PTPs, thereby facilitating our understanding of PTPs in cell signaling and in diseases.  相似文献   

4.
A versatile assay for protein tyrosine phosphatases (PTP) employing 3-nitrophosphotyrosine containing peptidic substrates is described. These therapeutically important phosphatases feature in signal transduction pathways. The assay involves spectrophotometric detection of 3-nitrotyrosine production from 3-nitrophosphotyrosine containing peptidic substrates, which are accepted by many PTPs. Compared to conventional chromogenic phosphate derivatives, the more realistic peptidic substrates allow evaluating substrate specificity. The assay’s applicability is demonstrated by determining kinetic parameters for several PTP-substrate combinations and inhibitor evaluation, as well as detection of PTP activity in lysates. The convenient new assay may assist further adoption of PTPs in drug development.  相似文献   

5.
It is now well established that the members of the PTP (protein tyrosine phosphatase) superfamily play critical roles in fundamental biological processes. Although there has been much progress in defining the function of PTPs, the task of identifying substrates for these enzymes still presents a challenge. Many PTPs have yet to have their physiological substrates identified. The focus of this review will be on the current state of knowledge of PTP substrates and the approaches used to identify them. We propose experimental criteria that should be satisfied in order to rigorously assign PTP substrates as bona fide. Finally, the progress that has been made in defining the biological roles of PTPs through the identification of their substrates will be discussed.  相似文献   

6.
Understanding the function of protein tyrosine phosphatases (PTPs) is crucial to deciphering cellular signaling in higher organisms. Of the 100 putative PTPs in human genome, only a little is known about their precise biological functions. Thus establishing novel ways to study PTP function remains a top priority among researchers. Classical genetics and more recently the use of RNA interference (RNAi) for gene silencing remains a popular choice to study function. However, the one gene-one function hypothesis is now recognized as an oversimplified scenario, especially among the signaling proteins such as PTPs. Therefore, there is a need to understand gene function in an appropriate cellular context. Since proteins are the work horses of the cell, alteration of protein function by various means is a particularly attractive strategy. In this context, the chemical approach, where a small molecule is used to affect the function of the desired protein is increasingly being recognized as a method of choice. In this review, we describe how small molecules can be used to study the function of a prototypical PTP, PTP1B, which is a negative regulator in insulin signaling. This includes our initial strategies for finding the most potent and specific PTP1B inhibitor to date, synthesizing cell permeable analogues suitable for cellular studies, and using them to dissect the role of PTP1B in the insulin signaling pathway. This approach is potentially general and thus could be utilized to study the function of other PTPs.  相似文献   

7.
Protein tyrosine phosphatases (PTPs) are signaling enzymes that control a diverse array of cellular processes. Further insight into the specific functional roles of PTPs in cellular signaling requires detailed understanding of the molecular basis for substrate recognition by the PTPs. A central question is how PTPs discriminate between multiple structurally diverse substrates that they encounter in the cell. Although X-ray crystallography is capable of revealing the intimate structural details for molecular interaction, structures of higher order PTP.substrate complexes are often difficult to obtain. Hydrogen/deuterium exchange mass spectrometry (H/DX-MS) is a powerful tool for mapping protein-protein interfaces, as well as identifying conformational and dynamic perturbations in proteins. In addition, H/DX-MS enables analysis of large protein complexes at physiological concentrations and provides insight into the solution behavior of these complexes that can not be gleaned from crystal structures. We have utilized H/DX-MS to probe PTP dynamics, ligand binding, and the structural basis of substrate recognition. In this article, we review general principles of H/DX-MS technology as applied to study protein-protein interactions and dynamics. We also provide protocols for H/DX-MS successfully used in our laboratory to define the molecular basis of ERK2 substrate recognition by MKP3. Many of the aspects that we cover in detail should be applicable to the study of other PTPs with their specific targets.  相似文献   

8.
Evolution of the multifunctional protein tyrosine phosphatase family   总被引:4,自引:0,他引:4  
The protein tyrosine phosphatase (PTP) family plays a central role in signal transduction pathways by controlling the phosphorylation state of serine, threonine, and tyrosine residues. PTPs can be divided into dual specificity phosphatases and the classical PTPs, which can comprise of one or two phosphatase domains. We studied amino acid substitutions at functional sites in the phosphatase domain and identified putative noncatalytic phosphatase domains in all subclasses of the PTP family. The presence of inactive phosphatase domains in all subclasses indicates that they were invented multiple times in evolution. Depending on the domain composition, loss of catalytic activity can result in different consequences for the function of the protein. Inactive single-domain phosphatases can still specifically bind substrate and protect it from dephosphorylation by other phosphatases. The inactive domains of tandem phosphatases can be further subdivided. The first class is more conserved, still able to bind phosphorylated tyrosine residues and might recruit multiphosphorylated substrates for the adjacent active domain. The second has accumulated several variable amino acid substitutions in the catalytic center, indicating a complete loss of tyrosine-binding capabilities. To study the impact of substitutions in the catalytic center to the evolution of the whole domain, we examined the evolutionary rates for each individual site and compared them between the classes. This analysis revealed a release of evolutionary constraint for multiple sites surrounding the catalytic center only in the second class, emphasizing its difference in function compared with the first class. Furthermore, we found a region of higher conservation common to both domain classes, suggesting a new regulatory center. We discuss the influence of evolutionary forces on the development of the phosphatase domain, which has led to additional functions, such as the specific protection of phosphorylated tyrosine residues, substrate recruitment, and regulation of the catalytic activity of adjacent domains.  相似文献   

9.
Zhang XY  Bishop AC 《Biochemistry》2008,47(15):4491-4500
Small molecules that can be used to turn off the activities of specific cellular proteins are essential tools for chemical biology. Few such compounds are known, however, and they are particularly difficult to identify for members of large protein families. Here, we present a method for insertion of a chemical "off switch" into a catalytically essential loop region (the "WPD loop") of a protein tyrosine phosphatase (PTP). Using a combination of point mutations and amino acid insertions, we have engineered variants of T-cell PTP (TCPTP) that possess cysteine-rich WPD loops. The engineered WPD loops, which contain sequences that appear in no wild-type PTP, confer upon TCPTP the ability to bind a cell-permeable small molecule (the biarsenical fluorescein derivative, FlAsH) that is not an inhibitor of wild-type PTPs. We have identified sites in TCPTP's WPD loop that can be modified to display FlAsH-binding cysteine residues without disrupting TCPTP's inherent PTP activity, as assayed with either small-molecule or phosphorylated-peptide PTP substrates. Upon addition of the FlAsH ligand, however, the activities of the mutants drop dramatically. Inhibition of the FlAsH-sensitized TCPTP mutants is rapid and specific; and strong FlAsH sensitivity was observed in mutants that contain as few as two cysteine point mutations in their engineered WPD loops. Our results show that relatively conservative substitutions can be used to engineer precise small-molecule control of PTP activity. Moreover, since all known classical PTPs utilize the WPD-loop mechanism targeted in this study, it is likely that a substantial fraction of the PTP superfamily can be sensitized through an analogous approach.  相似文献   

10.
Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains one such CpsB-like PTP, YwqE, in addition to two class II Cys-based PTPs, YwlE and YfkJ. The substrates for both YwlE and YfkJ are presently unknown, while YwqE was shown to dephosphorylate two phosphotyrosine-containing proteins implicated in UDP-glucuronate biosynthesis, YwqD and YwqF. In this study, we characterize YwqE, compare the activities of the three B. subtilis PTPs (YwqE, YwlE, and YfkJ), and demonstrate that the two B. subtilis class II PTPs do not dephosphorylate the physiological substrates of YwqE.  相似文献   

11.
12.
Many pharmacologically important receptors, including all cytokine receptors, signal via tyrosine (auto)phosphorylation, followed by resetting to their original state through the action of protein tyrosine phosphatases (PTPs). Establishing the specificity of PTPs for receptor substrates is critical both for understanding how signaling is regulated and for the development of specific PTP inhibitors that act as ligand mimetics. We have set up a systematic approach for finding PTPs that are specific for a receptor and have validated this approach with the insulin receptor kinase. We have tested nearly all known human PTPs (45) in a membrane binding assay, using "substrate-trapping" PTP mutants. These results, combined with secondary dephosphorylation tests, confirm and extend earlier findings that PTP-1b and T-cell PTP are physiological enzymes for the insulin receptor kinase. We demonstrate that this approach can rapidly reduce the number of PTPs that have a particular receptor or other phosphoprotein as their substrate.  相似文献   

13.
Protein tyrosine phosphatases (PTPs) constitute a large and structurally diverse family of signaling enzymes that control the cellular levels of protein tyrosine phosphorylation. Malfunction of PTP activity has significant implications in many human diseases, and the PTP protein family provides an exciting array of validated diabetes/obesity (PTP1B), oncology (SHP2), autoimmunity (Lyp), and infectious disease (mPTPB) targets. However, despite the fact that PTPs have been garnering attention as novel therapeutic targets, they remain largely an untapped resource. The main challenges facing drug developers by the PTPs are inhibitor specificity and bioavailability. Work over the last ten years has demonstrated that it is feasible to develop potent and selective inhibitors for individual members of the PTP family by tethering together small ligands that can simultaneously occupy both the active site and unique nearby peripheral binding sites. Recent results with the bicyclic salicylic acid pharmacophores indicate that the new chemistry platform may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Structural analysis of PTP-inhibitor complexes reveals molecular determinants important for the development of more potent and selective PTP inhibitors, thus offering hope in the medicinal chemistry of a largely unexploited protein class with a wealth of attractive drug targets.  相似文献   

14.
Xie L  Zhang YL  Zhang ZY 《Biochemistry》2002,41(12):4032-4039
Although members of the protein tyrosine phosphatase (PTPase) family share a common mechanism of action (hydrolysis of phosphotyrosine), the cellular processes in which they are involved can be both highly specialized and fundamentally important. Identification of cellular PTPase substrates will help elucidate the biological functions of individual PTPases. Two types of substrate-trapping mutants are being used to isolate PTPase substrates. In the first, the active site Cys residue is replaced by a Ser (e.g., PTP1B/C215S) while in the second, the general acid Asp residue is substituted by an Ala (e.g., PTP1B/D181A). Unfortunately, only a limited number of PTPase substrates have been identified with these two mutants, which are usually relatively abundant cellular proteins. Based on mechanistic considerations, we seek to create novel PTPase mutants with improved substrate-trapping properties. Kinetic and thermodynamic characterization of the newly designed PTP1B mutants indicates that PTP1B/D181A/Q262A displays lower catalytic activity than that of D181A. In addition, D181A/Q262A also possesses 6- and 28-fold higher substrate-binding affinity than those of D181A and C215S, respectively. In vivo substrate-trapping experiments indicate that D181A/Q262A exhibits much higher affinity than both D181A and C215S for a bona fide PTP1B substrate, the epidermal growth factor receptor. Moreover, D181A/Q262A can also identify novel, less abundant substrates, that are missed by D181A. Thus, this newly developed and improved substrate-trapping mutant can serve as a powerful affinity reagent to isolate and purify both high- and low-abundant protein substrates. Given that both Asp181 and Gln262 are invariant among the PTPase family, it is predicted that this improved substrate-trapping mutant would be applicable to all members of PTPases for substrate identification.  相似文献   

15.
A continuous activity assay for protein tyrosine phosphatases (PTPs), employing phosphotyrosine (P-Tyr) as a substrate, has been developed and applied to measure the activities of two purified enzymes, namely, the full length T-cell protein tyrosine phosphatase (TC PTP) and its truncated form (TC delta C11 PTP). The reaction was followed by changes in ultraviolet absorption and fluorescence resulting from the dephosphorylation of P-Tyr. Both enzymes obey Michaelis-Menten kinetics, with Km = 304 microM, Vmax = 62,000 units/mg for TC PTP and Km = 194 microM, Vmax = 73,000 units/mg for TC delta C11 PTP. The D- and L-forms of P-Tyr are equally effective as substrates. The optimum pH for both enzymes is 4.75. The known effectors of PTPs have the predicted effects on catalytic activity.  相似文献   

16.
Signaling through receptor tyrosine kinases (RTKs) is a major mechanism for intercellular communication during development and in the adult organism, as well as in disease-associated processes. The phosphorylation status and signaling activity of RTKs is determined not only by the kinase activity of the RTK but also by the activities of protein tyrosine phosphatases (PTPs). This review discusses recently identified PTPs that negatively regulate various RTKs and the role of PTP inhibition in ligand-induced RTK activation. The contributions of PTPs to ligand-independent RTK activation and to RTK inactivation by other classes of receptors are also surveyed. Continued investigation into the involvement of PTPs in RTK regulation is likely to unravel previously unrecognized layers of RTK control and to suggest novel strategies for interference with disease-associated RTK signaling.  相似文献   

17.
Recent biochemical and genetic approaches have clearly defined the functional role of critical components in tyrosine phosphorylation-dependent signal transduction. These signaling modulators often exhibit evolutionarily conserved functions across various species. It has been proposed that if protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), and thousands of their substrates could be identified and characterized, it would significantly advance our understanding of the underlying mechanisms that control animal development and physiological homeostasis. The fruit fly Drosophila melanogester has been used extensively as a model organism for investigating the developmental processes, but the state of its tyrosine phosphorylation is poorly characterized. In the current study, we used advanced mass spectrometry (MS)-based shotgun analyses to profile the tyrosine phosphoproteome of Drosophila S2 cells. Using immunoaffinity isolation of the phosphotyrosine (pTyr) subproteome from cells treated with pervanadate followed by enrichment of phosphopeptides, we identified 562 nonredundant pTyr sites in 245 proteins. Both this predefined pTyr proteome subset and the total cell lysates were then used as sample sources to identify potential substrates of dPTP61F, the smallest member in terms of amino acid number and molecular weight in the Drosophila PTP family and the ortholog of human PTP1B and T Cell-PTP, by substrate trapping. In total, 20 unique proteins were found to be specifically associated with the trapping mutant form of dPTP61F, eluted by vanadate (VO4(3-)), and identified by MS analyses. Among them, 16 potential substrates were confirmed as tyrosine phosphorylated proteins, including a receptor PTK PDGF/VEGF receptor, a cytosolic PTK Abl, and several components of SCAR/WAVE complex, which may work in coordination to control actin dynamics. Thus, our data suggest that dPTP61F plays a central role in counteracting PTK-mediated signaling pathways as well as in regulating actin reorganization and remodeling through tyrosine dephosphorylation of critical substrates in Drosophila cells.  相似文献   

18.
Protein-tyrosine phosphatases (PTPs) are important for the control of proper cellular tyrosine phosphorylation. Despite the large number of PTPs encoded in the human genome and the emerging roles played by PTPs in human diseases, a detailed understanding of the role played by PTPs in normal physiology and in pathogenic conditions has been hampered by the absence of PTP-specific inhibitors. Such inhibitors could serve as useful tools for determining the physiological functions of PTPs and may constitute valuable therapeutics in the treatment of several human diseases. However, because of the highly conserved nature of the active site, it has been difficult to develop selective PTP inhibitors. By taking an approach to tether together two small ligands that can interact simultaneously with the active site and a unique proximal noncatalytic site, we have recently acquired Compound 2 (see Fig. 1), the most potent and selective PTP1B inhibitor identified to date, which exhibits several orders of magnitude selectivity in favor of PTP1B against a panel of PTPs. We describe an evaluation of the interaction between 2 and its analogs with PTP1B and its site-directed mutants selected based on hydrogen/deuterium exchange of PTP1B backbone amides in the presence and absence of 2. We have established the binding mode of Compound 2 and identified 12 PTP1B residues that are important for the potency and selectivity of Compound 2. Although many of the residues important for Compound 2 binding are not unique to PTP1B, the combinations of all contact residues differ between PTP isozymes, which suggest that the binding surface defined by these residues in individual PTPs determines inhibitor selectivity. Our results provide structural information toward understanding of the molecular basis for potent and selective PTP1B inhibition and further establish the feasibility of acquiring potent, yet highly selective, PTP inhibitory agents.  相似文献   

19.
P James  B D Hall  S Whelen  E A Craig 《Gene》1992,122(1):101-110
In higher eukaryotic organisms, the regulation of tyrosine phosphorylation is known to play a major role in the control of cell division. Recently, a wide variety of protein tyrosine phosphatase (PTPase)-encoding genes (PTPs) have been identified to accompany the many tyrosine kinases previously studied. However, in the yeasts, where the cell cycle has been most extensively studied, identification of the genes involved in the direct regulation of tyrosine phosphorylation has been difficult. We have identified a pair of genes in the yeast Saccharomyces cerevisiae, which we call PTP1 and PTP2, whose products are highly homologous to PTPases identified in other systems. Both genes are poorly expressed, and contain sequence elements consistent with low-abundance proteins. We have carried out an extensive genetic analysis of PTP1 and PTP2, and found that they are not essential either singly or in combination. Neither deletion nor overexpression results in any strong phenotypes in a number of assays. Deletions also do not affect the mitotic blockage caused by deletion of the MIH1 gene (encoding a positive regulator of mitosis) and induction of the heterologous Schizosaccharomyces pombe wee1+ gene (encoding a negative regulator of mitosis). Molecular analysis has shown that PTP1 and PTP2 are quite different structurally and are not especially well conserved at the amino acid sequence level. Low-stringency Southern blots indicate that yeast may contain a family of PTPase-encoding genes. These results suggest that yeast may contain other PTPase-encoding genes that overlap functionally with PTP1 and PTP2.  相似文献   

20.
UV irradiation causes inflammatory and proliferative cellular responses. We have proposed previously that these effects are, to a large extent, caused by the ligand-independent activation of several receptor tyrosine kinases due to the inactivation of their negative control elements, the protein tyrosine phosphatases (PTPs). We examined the mechanism of this inactivation and found that, in addition to reversible oxidation of PTPs, UV triggers a novel mechanism: induced degradation of PTPs by calpain, which requires both calpain activation and substrate PTP oxidative modification. This as yet unrecognized effect of UV is irreversible, occurs predominantly with UVA and UVB, the range of wavelengths in sunlight that reach the skin surface, and at physiologically relevant doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号