首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS) initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01) with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001) dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation.  相似文献   

2.
《Phytomedicine》2015,22(2):262-270
PurposeEfficient strategies for the prevention of colon cancer are extensively being explored, including dietary intervention and the development of novel phytopharmaceuticals. Safe extracts of edible plants contain structurally diverse molecules that can effectively interfere with multi-factorial diseases such as colon cancer. In this study, we describe the antiproliferative and proapoptotic effects of ethanolic lemon balm (Melissa officinalis) leaves extract in human colon carcinoma cells. We further investigated the role of extra- and intracellular reactive oxygen species (ROS).MethodsAntitumor effects of lemon balm extract (LBE) were investigated in HT-29 and T84 human colon carcinoma cells. Inhibition of proliferation was analyzed by DNA quantification. The causal cell cycle arrest was determined by flow cytometry of propidium iodide-stained cells and by immunoblotting of cell cycle regulator proteins. To investigate apoptosis, cleavage of caspases 3 and 7 was detected by immunoblotting and fluorescence microscopy. Phosphatidylserine externalization was measured by Annexin V assays. Mechanistic insights were gained by measurement of ROS using the indicator dyes CM-H2DCFDA and Cell ROX Green.ResultsAfter 3 and 4 days of treatment, LBE inhibited the proliferation of HT-29 and T84 colon carcinoma cells with an inhibitory concentration (IC50) of 346 and 120 µg/ml, respectively. Antiproliferative effects were associated with a G2/M cell cycle arrest and reduced protein expression of cyclin dependent kinases (CDK) 2, 4, 6, cyclin D3, and induced expression of cyclin-dependent kinase inhibitor 2C (p18) and 1A (p21). LBE (600 µg/ml) induced cleavage of caspases 3 and 7 and phosphatidylserine externalization. LBE-induced apoptosis was further associated with formation of ROS, whereas quenching of ROS by antioxidants completely rescued the colon carcinoma cells from LBE-induced apoptosis.ConclusionsLemon balm (Melissa officinalis) extract inhibits the proliferation of colon carcinoma cells and induces apoptosis through formation of ROS. Taken together, LBE or subfractions thereof could be used for the prevention of colon cancer.  相似文献   

3.
Methotrexate (MTX), a folate antagonist, was developed for the treatment of malignancies, and is currently used in rheumatoid arthritis (RA) and other chronic inflammatory disorders. It has been proven in short-term and long-term prospective studies that low doses of MTX (0.75 mg/Kg/week) are effective in controlling the inflammatory manifestations of RA. Low-concentrations of MTX achieve apoptosis and clonal deletion of activated peripheral T cells. One of the mechanisms of the anti-inflammatory and immunosuppressive effects may be the production of reactive oxygen species (ROS). However, the drug resistance of MTX in malignancies remains poorly understood. Ornithine decarboxylase (ODC) plays an important role in diverse biological functions, including cell development, differentiation, transformation, growth and apoptosis. In our previous studies, ODC overexpression was shown to prevent TNFα-induced apoptosis via reducing ROS. Here, we also investigated one mechanism of MTX-induced apoptosis and of drug resistance as to the anti-apoptotic effects of ODC during MTX treatment. We found MTX could induce caspase-dependent apoptosis and promote ROS generation together with disrupting the mitochondrial membrane potential (ΔΨm) of HL-60 and Jurkat T cells. Putrescine and ROS scavengers could reduce MTX-induced apoptosis, which leads to the loss of ΔΨm, through reducing intracellular ROS. Overexpression of ODC in parental cells had the same effects as putrescine and the ROS scavengers. Moreover, ODC overexpression prevented the decline of Bcl-2 that maintains ΔΨm, the cytochrome c release and activations of caspase 9 and 3 following MTX treatment. The results demonstrate that MTX-induced apoptosis is ROS-dependent and occurs along a mitochondria-mediated pathway. Overexpressed ODC cells are resistant to MTX-induced apoptosis by reducing intracellular ROS production.  相似文献   

4.
The aim of our present study was to elucidate the effects of up-regulation and down-regulation of intracellular reactive oxygen species (ROS) level on proliferation, migration, and related molecular mechanism. Breast cancer cells were treated by catalase or H2O2. MTT, colony formation assay, and Hoechst/PI staining were used to evaluate proliferation and apoptosis. The level of intracellular ROS was measured by dichlorodihydrofluorescein diacetate probes. The ability of migration was detected by wound healing. Western blotting and coimmunoprecipitation (co-IP) were used to determine the expression of DLC1 and CAV-1 and their interaction. Our data indicated that up-regulation of intracellular ROS induced by H2O2 significantly inhibited proliferation and induced apoptosis accompanying G1 cell cycle arrest and elevated expression of p53. For cell migration, either up-regulation or down-regulation of ROS induced migration inhibition with reduction of interaction between DLC1 and CAV-1. Our results suggested that up-regulation of intracellular ROS inhibited proliferation by promoting expression of p53 and induced G1 cycle arrest and apoptosis. Fluctuation of ROS inhibited migration through reducing the interaction between DLC1 and CAV-1.  相似文献   

5.
The purpose of our study was to investigate underlying basic mechanisms of hypothermia-induced cardioprotection during oxidative stress in a cardiomyocyte cell culture model. For hypothermic treatment we cooled H9c2 cardiomyocytes to 20 °C, maintained 20 min at 20 °C during which short-term oxidative damage was inflicted with 2 mM H2O2, followed by rewarming to 37 °C. Later on, we analyzed lactate dehydrogenase (LDH), caspase-3 cleavage, reactive oxygen species (ROS), mitochondrial activity, intracellular ATP production, cytoprotective signal molecules as well as DNA damage. Hypothermia decreased H2O2 damage in cardiomyocytes as demonstrated in a lower LDH release, less caspase-3 cleavage and less M30 CytoDeath staining. After rewarming H2O2 damaged cells demonstrated a significantly higher reduction rate of intracellular ROS compared to normothermic H2O2 damaged cardiomyocytes. This was in line with a significantly greater mitochondrial dehydrogenase activity and higher intracellular ATP content in cooled and rewarmed cells. Moreover, hypothermia preserved cell viability by up-regulation of the anti-apoptotic protein Bcl-2 and a reduction of p53 phosphorylation. DNA damage, proven by PARP-1 cleavage and H2AX phosphorylation, was significantly reduced by hypothermia. In conclusion, we could demonstrate that hypothermia protects cardiomyocytes during oxidative stress by preventing apoptosis via inhibiting mitochondrial dysfunction and DNA damage.  相似文献   

6.
The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2–4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2–4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.  相似文献   

7.
A triterpenediol (TPD) comprising of isomeric mixture of 3α, 24-dihydroxyurs-12-ene and 3α, 24-dihydroxyolean-12-ene from Boswellia serrata induces apoptosis in cancer cells. An attempt was made in this study to investigate the mechanism of cell death by TPD in human leukemia HL-60 cells. It inhibited cell proliferation with IC50 ∼ 12 μg/ml and produced apoptosis as measured by various biological end points e.g. increased sub-G0 DNA fraction, DNA ladder formation, enhanced AnnexinV-FITC binding of the cells. Further, initial events involved massive reactive oxygen species (ROS) and nitric oxide (NO) formation, which were significantly inhibited by their respective inhibitors. Persistent high levels of NO and ROS caused Bcl-2 cleavage and translocation of Bax to mitochondria, which lead to loss of mitochondrial membrane potential (Δψm) and release of cytochrome c, AIF, Smac/DIABLO to the cytosol. These events were associated with decreased expression of survivin and ICAD with attendant activation of caspases leading to PARP cleavage. Furthermore, TPD up regulated the expression of cell death receptors DR4 and TNF-R1 level, leading to caspase-8 activation. These studies thus demonstrate that TPD produces oxidative stress in cancer cells that triggers self-demise by ROS and NO regulated activation of both the intrinsic and extrinsic signaling cascades.  相似文献   

8.
The mechanism of cytotoxicity on liver carcinoma Bel-7402 cells induced by copper-1,10-phenanthroline, Cu(OP)2, has been studied. Cell viability and apoptotic rate were examined in cells treated with Cu(OP)2 or Cu2+ alone. It was found that the apoptosis induced by Cu(OP)2 could not be induced by Cu2+ or OP alone in our experimental conditions. Total copper content in cells was measured by atomic absorption spectrophotometry, and the abnormal elevation of intracellular copper transported by lipophilic OP ligand may play the role of initial factor in the apoptosis, which caused subsequent redox state changes in cells. Intracellular levels of reactive oxygen species (ROS) were detected by fluorescent probe 2′,7′-dichlorofluorescein diacetate (DCFH-DA). Reduced (GSH) and total glutathione (GSSG + GSH) were determined by High-performance liquid chromatography (HPLC) after derivatization, and the ratios of GSH/GSSG were subsequently calculated. The overproduction of ROS and the decreased GSH/GSSG ratio were observed in cells which represented the occurrence of oxidative stress in the apoptosis. Oxidative DNA damage was also found in cells treated with Cu(OP)2 in the early stage of the apoptosis, and it suggests that the activation of DNA repair system may be involved in the pathway of the apoptosis induced by Cu(OP)2.  相似文献   

9.
Chlorogenic acid (CGA) is a phenolic compound with various health-promoting properties, including antioxidant effects and a wide range of antibacterial activities. However, the antibacterial mechanism remains unclear. We investigated the underlying mode of action of CGA against Escherichia coli, which shows bacterial apoptosis-like death. Cells treated with CGA showed apoptotic features such as membrane depolarisation, caspase-like protein expression, increased intracellular Ca2+ levels, phosphatidylserine externalisation, and DNA fragmentation. In contrast to common bacterial apoptosis-like death, which is caused by reactive oxygen species (ROS) accumulation, CGA depleted intracellular ROS. Because ROS are important intracellular signalling molecules, and ROS depletion may affect bacterial intracellular signalling pathways, leading to cell death. To determine whether deficiencies in intracellular ROS cause apoptosis-like death, the cells were treated with H2O2 after CGA treatment. H2O2 restored depleted intracellular ROS levels to similar levels as in untreated cells, and cell viability was increased compared to CGA-treated cells. Moreover, apoptotic features were attenuated in H2O2 post-treated cells. These results demonstrate that CGA induces bacterial apoptosis in E. coli and intracellular ROS depletion is a core regulator in the progression of bacterial apoptosis-like death.  相似文献   

10.
Oxidative stress leads to mitochondrial dysfunction, which triggers the opening of the permeability transition pores (PTP) and the release of pro-apoptotic factors causing apoptotic cell death. In a limited number of cell systems, anti-oxidants and free-radical scavengers have been shown to block this response. We have previously reported that coenzyme Q10 (CoQ10), an electron carrier in the mitochondrial respiratory chain, is involved in the reactive oxygen species (ROS) removal and prevention of oxidative stress-induced apoptosis in neuronal cells. However, the mechanism of this protection has not been fully elucidated. In the present study we investigated the effects of CoQ10 on the mitochondrial events characteristic to apoptosis, especially on the function of pro-apoptotic protein Bax. Our results demonstrated that following a brief exposure of two human cell lines (fibroblasts and HEK293 cells) to H2O2 the intracellular levels of ROS and the association of Bax with the mitochondria significantly increased and the cells underwent apoptosis. Both of these events, as well as the release of cytochrome c from the mitochondria, were blocked by a 24 h pre-treatment with CoQ10. It is therefore believed that CoQ10 prevented the collapse of the mitochondrial membrane potential in response to the H2O2 treatment. Recombinant Bax protein alone caused the ROS generation and release of cytochrome c from isolated mitochondria and, again, CoQ10 inhibited these Bax-induced mitochondrial dysfunctions.  相似文献   

11.
12.
The alkaloids 12-epi-hapalindole E isonitrile,isolated from the cyanobacterium Fischerellasp., and the indolophenanthridine calothrixin A, fromCalothrix sp., were characterized in terms oftheir ability to kill several organisms and celltypes, and their biochemical modes of action. Bothcompounds inhibited RNA synthesis, and consequentlyprotein synthesis, in Bacillus subtilis. Calothrixin A also inhibited DNA replication, thehapalindole having little effect on this process. Measurements of in vitro RNA synthesis confirmedthe in vivo results and suggested that bothcompounds inhibit RNA polymerase directly; the degreeof inhibition was independent of the DNAconcentration, but strongly dependent on thepolymerase concentration.  相似文献   

13.
Suberoyl bishydroxamic acid (SBHA) as a histone deacetylase (HDAC) inhibitor has various cellular effects such as cell growth and apoptosis. In the present study, we evaluated the effects of SBHA on the growth and death of A549 lung cancer cells. SBHA inhibited the growth of A549 cells with an IC50 of approximately 50 μM at 72 h in a dose-dependent manner. DNA flow cytometric analysis indicated that SBHA induced a G2/M phase arrest of the cell cycle. This agent also induced apoptosis, as evidenced by sub-G1 cells and annexin V-FITC staining cells. SBHA-induced apoptosis was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm), Bcl-2 decrease, Bax increase, and the activation of caspase-3. All of the tested caspase inhibitors significantly rescued some cells from SBHA-induced A549 cell death. However, none of the caspase inhibitors prevented the loss of MMP (ΔΨm) induced by SBHA. Intracellular reactive oxygen species (ROS) levels including O 2 ?? were increased in 50 μM SBHA-treated A549 cells. None of the caspase inhibitors attenuated ROS levels in these cells. SBHA also elevated the number of glutathione (GSH)-depleted cells in A549 cells, which was reduced by treatment with caspase inhibitors. In conclusion, this is the first report that SBHA inhibited the growth of A549 lung cancer cells via caspase-dependent apoptosis, which was related to GSH depletion rather than changes in ROS level.  相似文献   

14.
Barley is a major crop worldwide. It has been reported that barley seeds have an effect on scavenging ROS. However, little has been known about the functional role of the barley on the inhibition of DNA damage and apoptosis by ROS. In this study, we purified 3,4-dihydroxybenzaldehyde from the barley with silica gel column chromatography and HPLC and then identified it by GC/MS. And we firstly investigated the inhibitory effects of 3,4-dihydroxybenzaldehyde purified from the barley on oxidative DNA damage and apoptosis induced by H2O2, the major mediator of oxidative stress and a potent mutagen. In antioxidant activity assay such as DPPH radical and hydroxyl radical scavenging assay, Fe2+ chelating assay, and intracellular ROS scavenging assay by DCF-DA, 3,4-dihydroxybenzaldehyde was found to scavenge DPPH radical, hydroxyl radical and intracellular ROS. Also it chelated Fe2+. In in vitro oxidative DNA damage assay and the expression level of phospho-H2A.X, it inhibited oxidative DNA damage and its treatment decreased the expression level of phospho-H2A.X. And in oxidative cell death and apoptosis assay via MTT assay and Hoechst 33342 staining, respectively, the treatment of 3,4-dihydroxybenzaldehyde attenuated H2O2-induced cell death and apoptosis. These results suggest that the barley may exert the inhibitory effect on H2O2-induced tumor development by blocking H2O2-induced oxidative DNA damage, cell death and apoptosis.  相似文献   

15.
Hyperhomocysteinemia is an important risk factor for atherosclerosis. We previously reported that formation of early atherosclerosis in the rat aorta was associated with hyperhomocysteinemia and reduction of antioxidant activity caused by low concentration of vitamin B6in vivo. In the present study, we examined effects of vitamin B6 on apoptosis of bovine endothelial cells (NM-1 cells) treated with homocysteine and copper. Homocysteine and copper induced extracellular hydrogen peroxide, intracellular ROS and cellular lipid peroxide levels. Cell viability was reduced to 30% compared to that of control cells. On the other hand, pyridoxal treatment as well as EDTA treatment increased viability of NM-1 cells treated with homocysteine and copper to about 60%, and significantly decreased extracellular hydrogen peroxide, intracellular ROS and cellular lipid peroxide levels. The treatment of catalase recovered cell viability and reduced the level of extracellular hydrogen peroxide and intracellular ROS. Cell death by homocysteine and copper was confirmed to be due to apoptosis by evaluation of DNA fragmentation and by TUNEL assay. However, apoptosis of NM-1 cells induced by homocysteine and copper was due to a caspase-independent pathway as it was not inhibited by the caspase inhibitor, Z-VAD-fmk. Apoptosis of NM-1 cells induced by homocysteine and copper accompanied with mitochondrial permeability but not cytochrome c release. These results suggest that pyridoxal treatment suppresses apoptosis of NM-1 cells induced by homocysteine and copper, most likely through antioxidant effects.  相似文献   

16.
In the present study, we investigated the signaling pathways implicated in the induction of apoptosis by two modified nucleosides, 5-phenylselenyl-methyl-2′-deoxyuridine (PhSe-T) and 5-methylselenyl-methyl-2′-deoxyuridine (MeSe-T), using human cancer cell lines. The induction of apoptosis was associated with proteolytic activation of caspase-3 and -9, PARP cleavage, and decreased levels of IAP family members, including c-IAP-1 and c-IAP-2, but had no effect on XIAP and survivin. PhSe-T and MeSe-T also enhanced the activities of caspase-2 and -8, Bid cleavage, and the conformational activation of Bax. Additionally, nucleoside derivative-induced apoptosis was inhibited by the selective inhibitors of caspase-2, -3, -8, and -9 and also by si-RNAs against caspase-2, -3, -8, and -9; however, inhibition of caspase-2 and -3 was more effective at preventing apoptosis than inhibition of caspase-8 and -9. Moreover, the inhibition of caspase-2 activation by the pharmacological inhibitor z-VDVAD-fmk or by the knockdown of protein expression using siRNA suppressed nucleoside derivative-induced caspase-3 activation, but not vice versa. PhSe-T and MeSe-T also induced a Δψm loss via a CsA-insensitive mechanism, ROS production, and DNA damage, including strand breaks. Moreover, ROS scavengers such as NAC, tiron, and quercetin inhibited nucleoside derivative-induced ROS generation and apoptosis by blocking the sequential activation of caspase-2 and -3, indicating the role of ROS in caspase-2-mediated apoptosis. Taken together, these results indicate that caspase-2 acts upstream of caspase-3 and that caspase-2 functions in response to DNA damage in both PhSe-T- and MeSe-T-induced apoptosis. Our results also suggest that ROS are critical regulators of the sequential activation of caspase-2 and -3 in nucleoside derivative-treated cancer cells.  相似文献   

17.
The aim of this study was to evaluate the impact that 6‐O‐(3″, 4″‐di‐Otrans‐cinnamoyl)‐α‐ l ‐rhamnopyranosylcatalpol (Dicinn) and verbascoside (Verb), two compounds simultaneously reported in Verbascum ovalifolium, have on tumor cell viability, apoptosis, cell cycle kinetics, and intracellular reactive oxygen species (ROS) level. At 100 µg/mL and 48 hours incubation time, Dicinn and Verb produced good cytotoxic effects in A549, HT‐29, and MCF‐7 cells. Dicinn induced cell‐cycle arrest at the G0/G1 phase and apoptosis, whereas Verb increased the population of subG1 cells and cell apoptosis rates. Furthermore, the two compounds exhibited time‐dependent ROS generating effects in tumor cells (1‐24 hours). Importantly, no cytotoxic effects were induced in nontumor MCF‐10A cells by the two compounds up to 100 µg/mL. Overall, the effects exhibited by Verb in tumor cells were more potent, which can be correlated with its structural features, such as the presence of phenolic hydroxyl groups.  相似文献   

18.
《Free radical research》2013,47(1):479-488
Washed or growing E. coli cells are killed by epinephrine, norepinephrine or dopamine in the presence of non lethal concentrations of Cu(II). Killing is enhanced by anoxia and by sublethal Concentrations of H2O1. The rate of killing is proportional to the rate of catecholamine oxidation. The copper epinephrine complex binds to E. coli cells, induces membrane damage and depletion of the cellular ATP pool. The cells may be partially protected by SOD or catalase but not by OH radical scavengers. Addition of H2O2 to cells which were sensitized by preincubation with the epinephrine-copper complex, causes rapid killing and DNA degradation. Sensitized cells are not protected by BSA.  相似文献   

19.
Platinum-based chemotherapy represents one of the most effective ways in combating human cancers. However, the cardiotoxicity subsequent severely limited its clinical application. Increased evidences indicate that oxidative stress plays a crucial role in the pathological process of platinum-induced cardiotoxicity. It is reported that apelin-13 a bioactive peptide has the scavenging capacity of free radical, and it has the potential to regulate the cardiovascular system. Hence, the potential of apelin-13 to antagonize cisplatin-induced cardiotoxicity was evaluated in H9c2 rat myocardial cells in vitro and in C57 mice in vivo. The results showed that cisplatin indeed caused DNA damage in H9c2 cells by promoting the accumulation of intracellular reactive oxygen species (ROS) and superoxide anion, which led to cell apoptosis and resulted in overt cardiotoxicity. However, apelin-13 pre-treatment effectively attenuated the cisplatin-induced ROS and superoxide anion generation, inhibited DNA damage, and suppressed the PARP cleavage and caspases activation. Further investigation revealed that apelin-13 blocked cisplatin-induced H9c2 cells apoptosis involving the regulation of MAPKs and PI3K/Akt signaling pathway. Importantly, apelin-13 co-treatment also significantly attenuated cisplatin-induced cardiotoxicity in vivo by inhibiting myocardial cells apoptosis and improving angiogenesis in mice heart. Taken together, our results suggest that the use of apelin-13 may be an effective strategy for antagonizing the cardiotoxicity-induced by platinum-based chemotherapy.  相似文献   

20.
《Free radical research》2013,47(12):1458-1471
Reactive oxygen species (ROS) are an important factor in the development of skin photodamage after ultraviolet A (UVA) radiation. A flavonoid antioxidant, baicalin, can selectively neutralize super-oxide anion (O2?) while having no significant effect on ?OH. Fibroblasts are a key component of skin dermis. In the present study, we investigated the protective effects of baicalin on human skin fibroblasts (HSFs) under UVA induced oxidative stress. Fluorescence microscopy and flow cytometry were used to assay the intracellular O2?, NO, ROS concentrations and the mitochondrial membrane potential. Cell viability was determined using the Cell Counting Kit-8 (CCK-8). The concentrations of cellular MDA, SOD, GSH, T-AOC, and 8-oxo-dG were also measured. Cellular apoptosis was measured by flow cytometry and caspase-3 detection. The results revealed that UVA radiation could cause oxidative stress and apoptosis in HSFs. Interestingly, the use of baicalin after UVA radiation signi?cantly reduced the level of intracellular O2?, NO, and ROS, stabilized the mitochondrial membrane potential, and attenuated production of MDA and 8-oxo-dG. These ef?ciently enhanced the antioxidative defense system and protected the HSFs from subsequent oxidative stress damage and apoptosis. In other words, baicalin decreased the excessive generation of intracellular ROS and NO, and elevated the cellular antioxidative defense, which eventually mitigate the UVA-induced apoptosis. Based on our results, baicalin may have applications in the treatment of skin photodamage caused by UVA irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号