首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water extracts from the retina and brain of 7-8-day old chick embryos were centrifuged at 20,000 g; sediments were discarded and supernatants were additionally centrifuged at 110,000 g. The inductive activity of supernatants (20,000 and 110,000 g) and sediments (110,000 g) was estimated in vitro on the Rana temporaria early gastrula ectoderm. The neutralizing activity was related exclusively to the soluble fractions of the extracts from the chick embryo retina and brain. The lens-inducing activity appeared to be characteristic of both the supernatants and the microsome fractions of these extracts. A comparative biochemical analysis of the extracts (isoelectrofocusing, electrophoresis in the presence of sodium dodecylsulfate, electroblotting) has shown that the chick embryo retina and brain are similar by the spectrum and properties of peptides. It is suggested that the similarity of the extracts inducing effect on the early gastrula ectoderm is due to the presence of the same proteins (peptides) in the retina and brain. Peptides with a positive immunohistochemical reaction to vimentin and peptides of neurofilaments were found in trace quantities in the retina and brain extracts by means of immunoelectroblotting.  相似文献   

2.
Small pieces of the animal cap of X. borealis gastrulae were transplanted into various regions of the noninvoluting marginal zone of albino X. laevis gastrulae, and the distribution of the donor cells was analyzed by quinacrine fluorescence staining.
The present study indicated that the prospective central nervous system (CNS) lies as a belt-shaped area in the noninvoluting marginal zone of early gastrulae. This belt-shaped prospective neural area extends as far as 0.7 mm (115° to the vegetal pole) above the blastopore in the dorsal midline and 1.3 mm lateral (130° to the dorsal midline) to the dorsal midline. The ectoderm of the dorsal region extends in the animal-vegetal direction and forms the ventral side of the CNS. The dorsalateral and lateral regions converge toward the dorsal midline and extended in the animal-vegetal direction. The former constitutes the lateral side of the anterior CNS, and the latter the dorso-lateral side of the posterior CNS.
The outer layer of ectoderm which was transplanted onto the inner layer of the host gastrula differentiated into neural tissues.
The prospective areas of the CNS and their morphogenetic movement during Xenopus embryogenesis are also discussed with regard to neural induction.  相似文献   

3.
Homoiogenetic Neural Induction in Xenopus Chimeric Explants   总被引:1,自引:1,他引:0  
We previously raised monoclonal antibodies specific for epidermis (7) and neural tissue (8) of Xenopus for use as markers of tissue differentiation in induction experiments (8). Here we have used these monoclonal antibodies to examine homoiogenetic neural induction, by which cells induced to differentiate to neural tissues can in turn induce competent ectoderm to do the same. Presumptive anterior neural plate excised from late gastrulae of Xenopus laevis was conjugated with competent ectoderm from the initial gastrula of Xenopus borealis , either side by side or with their inner surfaces together. The chimeric explants enabled us to distinguish induced neural tissues from inducing neural tissues. In both types of explant, neural tissues identified by the neural tissue-specific antibody, NEU-1, were induced in the competent ectoderm by the presumptive anterior neural plate. The results suggest that homoiogenetic neural induction does occur in Xenopus embryos.  相似文献   

4.
20 water-soluble antigen have been identified with the help of rabbit antisera to extracts of the early gastrula ectoderm and neural plate in Rana temporaria. All of them were also found in the early blastula embryos and unfertilized eggs. The identified antigens are characterized by a definite embryospecificity. As the development proceeds, the concentration of these antigens in the embryonic tissues decreases until the complete disappearance of corresponding immunoelectrophoretic reactions. By this characteristic all antigens under study are subdivided into four groups: I--five antigens identified at the early developmental stages only (until hatching, stage 29); II--nine antigens present up to stages 33--35; III--three antigens followed up to stages 39--40 (well formed tadpole); IV--three antigens were found at all developmental stages under study up to stages 45--47. 11 out of 20 identified antigens have antigenic similarity with the proteins of blood serum of adult amphibians. Besides, the early gastrula ectoderm contains antigens similar with those of the brain of adult amphibians.  相似文献   

5.
Distribution of cytokeratin epitopes was studied in X. laevis embryos at stages 10-25 using 5 monoclonal antibodies against proteins of the human and rat keratin filaments. Specific staining was observed in chorda, outer layers of ectoderm and presumptive epidermis (late gastrula), and inner layer of presumptive epidermis. The cells of the stained zone (presumptive epidermis) were compressed while the cells of unstained zone (presumptive neuroectoderm) were extended tangentially.  相似文献   

6.
The studies of the development of eye rudiments and formation of adult eye tissues have always been among priorities in developmental biology and then in developmental genetics, which is associated with the peculiarities of the development and structure of the eye. In the late 80s, it was established by the group of developmental factors of the Institute of Gene Biology of RAS that many differentiated tissues are able to produce proteins causing homologous differentiations in polypotent cells of early gastrula ectoderm. The aim of our present study was isolation of proteins secreted by mammalian and fish retinal cells and determination of their inductive properties in early gastrula ectoderm of Xenopus laevis. The sets of proteins secreted by retina induce tissues homologous to the inducer, that is, neural tissue, brain, retina, pigmented epithelium, and also lenses and ear vesicles. The retinal inductive proteins retain their homologous inductive capacity after lyophilization. Biological testing shows that a total mixture of proteins secreted by retinal cells induces in polypotent gastrula ectoderm of X. laevis a narrower spectrum of tissues than the fractions obtained from this mixture. The above-outlined results obtained in thecourse of investigations of inductive peculiarities of retina and its fractions help in the elucidation of questions concerning embryonic induction and factors determining it, as well as questions concerning the maintenance of tissue specifity and regenerative capacity of the tissue studied.  相似文献   

7.
The scanning electron microscopical appearances of cells isolated from different regions of Xenopus laevis embryos of different stages, and cultured in vitro have been compared. Blastula inner ectoderm cells initially show filopodia, then become flattened onto the substrate and then form pseudopodia. Blastula outer ectoderm cells are initially similar, but do not form pseudopodia. Most of the ectoderm cells from gastrulae and neurulae are featureless. Endoderm cells from blastulae do not initially form filopodia, but later form pseudopodia. Most of the endoderm cells from gastrulae and neurulae show neither filopodia nor pseudopodia, but in the gastrula some elongated, cylindrical cells are observed. Thus cells change their appearance after the three hour culture period; cells from different regions of embryos of the same stage show different appearances in vitro ; and cells from equivalent regions of embryos of different stages show different behaviours in vitro.  相似文献   

8.
Immunoblotting using polyclonal antibodies (pAb) raised against an FR-1 receptor (FR-1R), a 57 kDa Arg-Gly-Asp-Ser (RGDS)-binding protein, of the sand dollar Clypeaster japonicus showed that the pAb monospecifically bound to the protein. FR-1R was present in purified plasma membrane, suggesting that the protein is a membrane-bound protein. The molecular structure of FR-1R did not change throughout the early embryogenesis, whereas its expression changed significantly during this period. FR-1R was present in the cortex of unfertilized eggs and was then transferred to the hyaline layer soon after the fertilization. The hyaline layer retained FR-1R immunoreactivity during early embryogenesis. FR-1R appeared on the basal side of the ectoderm at the morula stage and was retained basolaterally, at least, to the early gastrula stage. In mesenchyme blastulae, FR-1R was also present on the surface of primary mesenchyme cells (PMC). FR-1R was localized on the basal side of the ectoderm in early gastrulae, exclusively at the place where PMC formed ventrolateral aggregates, and at the apical tuft ectoderm. In vitro, PMC bound to FR-1R and its binding was inhibited in the presence of a synthetic RGDS peptide or the pAb. The pAb introduced into the blastocoele perturbed PMC migration and gastrulation. FR-1R was weakly recognized by antihuman integrin beta5 subunit pAb.  相似文献   

9.
Residual deformation of fragments of the embryonic tissues preserved after relaxation of the stretching force serve as a criterion of active redistribution of their cells caused by this stretching. We measured residual deformations of the Xenopus laevis ventral and dorsal ectoderm at the early gastrula and lateral ectoderm at the late gastrula-early neurula after stretching of varying time and force. While the samples responded to moderate (up to 40%) short-term stretching as elastic bodies (residual deformations were absent), residual deformation appeared in the early gastrula tissues after 30-60-min stretching, which were more pronounced in the ventral tissues than in the dorsal ones. On the contrary, a contractile reaction developed in the late gastrula-early neurula tissues in response to 60-min stretching, which almost relaxed residual deformation within 20 min after unloading. A conclusion was drawn that gastrulation and neurulation proceed under the conditions of relaxing and nonrelaxing mechanical tensions, respectively. Mechanical bases and morphogenetic role of the described reactions is discussed.  相似文献   

10.
The pieces of dorsal ectoderm of the Rana temporaria embryos at the early and midgastrula stages were transplated onto the dorsal surface of the X. laevis embryos of the same age and the movements and changes in the form and area of the transplants were followed from early gastrula to neurula. During the first period (early--midgastrula) all movements of the transplants were directed towards the blastopore and related ma- In the beginning of the second period the transplants moved toward the blastopore only in the most caudal region, whereas in all other regions the material was markedly displaced craniad. Until the early neurula stage these movements were related to the longitudinal expansion of the material in the dorsal area and later, during neurulation, to its transverse compression. The head region material was first markedly expanded in the transverse direction and then also contracted. Alternation of active contractions and expansion of the suprablastopore material has been revealed and mediocaudal (gastrulation) vs. craniopetal (neurulation) cell movements were distinctly shown.  相似文献   

11.
The ability of a tissue to respond to induction, termed its competence, is often critical in determining both the timing of inductive interactions and the extent of induced tissue. We have examined the lens-forming competence of Xenopus embryonic ectoderm by transplanting it into the presumptive lens region of open neural plate stage embryos. We find that early gastrula ectoderm has little lens-forming competence, but instead forms neural tissue, despite its location outside the neural plate; we believe that the transplants are being neuralized by a signal originating in the host neural plate. This neural competence is not localized to a particular region within the ectoderm since both dorsal and ventral portions of early gastrula ectoderm show the same response. As ectoderm is taken from gastrulae of increasing age, its neural competence is gradually lost, while lens competence appears and then rapidly disappears during later gastrula stages. To determine whether these developmental changes in competence result from tissue interactions during gastrulation, or are due to autonomous changes within the ectoderm itself, ectoderm was removed from early gastrulae and cultured for various periods of time before transplantation. The loss of neural competence, and the gain and loss of lens competence, all occur in ectoderm cultured in vitro with approximately the same time course as seen in ectoderm in vitro. Thus, at least from the beginning of gastrulation onwards, changes in competence occur autonomously within ectoderm. We propose that there is a developmental timing mechanism in embryonic ectoderm that specifies a sequence of competences solely on the basis of the age of the ectoderm.  相似文献   

12.
The gastrulae of amphioxus were investigated by means of scanning and transmission electron microscopy (SEM and TEM) during 7 arbitrary stages that were seen about 4 to 10 hr after fertilization. Throughout gastrulation, SEM revealed subtle differences in cells of the blastoporal lip. In fractured specimens at early and middle stages, two opposing zones different in shape, size, and connection of the component cells were found: one which consists of columnar smaller cells in close contact in animal region and the other which is composed of round or polygonal larger cells in looser association in vegetal region. The polar body was found unexpectedly on the concave vegetal surface of the early gastrula in about 25% of cases. This might be the result of migration of the polar body. A short cilium that later elongated was recognized on each cell at mid-gastrula stage. The cilia on the dorsal surface (the neural ectoderm) of the final-stage gastrula became shorter than those on the epidermal ectoderm. TEM of thin sections demonstrated that the cytoplasmic components of gastrula cells are essentially the same as those of cleavage cells. But, the homogeneous nucleus seen during cleavage changed into a heterogeneous structure in which a nucleolus and dense particles were seen. Until the late stage, regional characteristics of the gastrulae indicating definitively the anterior-posterior and dorso-ventral polarity were not detected in the present SEM and TEM study.  相似文献   

13.
Our previous studies showed that, unlike tissue extracts, the cells of living organs secrete substances capable of inducing the same organ rudiments in the early gastrula ectoderm (EGE). In this work, the molecular nature of these substances was studied. The porcine lens epithelium was chosen for the initial analysis. When cultivated, this epithelium secreted a mixture of proteins, which were separated by gel-filtration. Both the total protein mixture and its individual fractions were tested for their inducing capacity using the early gastrula ectoderm of Rana temporaria. Unexpected results were obtained, which indicated that (a) the mixture of native proteins secreted by lens epithelium has a selective inducing capacity differing from those of individual fractions isolated from this mixture and (b) each fraction has a specific effect, but all of them cause the induction of neural tissue or sensory organs. These results (obtained for the first time) suggest that the inducing capacity of individual protein fractions is wider than that of the total protein mixture secreted by lens epithelium. This fact raises a question concerning the relationships between the mechanisms underlying the corresponding inducing effects.  相似文献   

14.
Spatial and temporal pattern and quantities of nicks in nuclear DNA during gastrulation and neurulation was studied using nick-translation in sections of Xenopus laevis embryos. Specific changes in the number of nicks in different mesoderm and ectoderm regions were detected during embryogenesis. Dorso-ventral gradient of nuclear labelling was observed in mesoderm and inner ectoderm layer of early and middle gastrula. The gradient was inverted during transition from gastrula to neurula. At the same time dorso-ventral (in mesoderm) and ventro-dorsal (in outer ectoderm layer) gradients of nuclear labelling were increased. The intensity of nuclear labelling in all parts of embryo as a whole was remarkably higher during neurulation as compared with gastrulation. Dorso-ventral gradient of nuclear labelling was observed in mesoderm and ectoderm during neurulation. A connection between the nicks and differentiation status of the cells during early embryogenesis in amphibians is suggested.  相似文献   

15.
The differentiation and organizer activity of newt ectoderm treated with activin A was studied in explantation and transplantation experiments. In the explantation experiments, ectoderm dissected from late morulae–early gastrulae stage embryos treated with a high concentration of activin A (100 ng/mL) formed only yolk-rich endodermal cells. Mesodermal tissues, such as notochord and muscle, were seldom found in these explants. When they were transplanted into the blastocoele of other early gastrulae, they formed part of the endoderm of the host embryo and induced a secondary axis with only posterior characters (including axial mesoderm and neural tissues). In contrast, whole secondary axes were induced when activin-treated ectoderm was transplanted into the ventral marginal zone (VMZ) of early blastulae. The transplanted pieces invaginated by themselves and differentiated into foregut structures including pharynx, stomach, and liver. These phenomena were also observed in experiments in which presumptive foregut was used instead of activin-treated ectoderm. These findings show that activin-treated ectoderm can act as the complete organizing center in Cynops .  相似文献   

16.
1. Mechanical parameters were recorded from paced ventricular cardiac muscle strips of two amphibian species. Rana temporaria and xenopus laevis. 2. The strips contracted at pH 6.6 and 7.0 with either 1.6 or 3.0 mM Ca2+ while the temperature was changed from 5 to 30 degree C. 3. In the hearts of R. temporaria, but not in those of X. laevis, in increased Ca2+ concentration at low pH could compensate for the effect of lowered pH. 4. It is concluded that during high CO2 tension and/or low pH the myocardium of X. laevis was more temperature dependent, less Ca2+ dependent in the Ca2+ range examined and less sensitive to the pH and/or the CO2 tension during physiological temperature and Ca2+ concentration, than the cardiac muscle of R. temporaria.  相似文献   

17.
Our previous research has demonstrated that lens induction in Xenopus laevis requires inductive interactions prior to contact with the optic vesicle, which classically had been thought to be the major lens inductor. The importance of these early interactions has been verified by demonstrating that lens ectoderm is specified by the time it comes into contact with the optic vesicle. It has been argued that the tissues which underlie the presumptive lens ectoderm during gastrulation and neurulation, dorsolateral endoderm and mesoderm, are the primary early inductors. We show here, however, that these tissues alone cannot elicit lens formation in Xenopus ectoderm. Evidence is presented that presumptive anterior neural plate tissue (which includes the early eye rudiment) is an essential early lens inductor in Xenopus. The presence of dorsolateral mesoderm appears to enhance this response. These findings support a model in which an essential inductive signal passes through the plane of ectoderm during gastrula and early neurula stages from presumptive anterior neural tissue to the presumptive lens ectoderm. Since there is evidence for such interactions within a tissue layer in mesodermal and neural induction as well, this may be a general feature of the initial stages of determination of many tissues.  相似文献   

18.
The appearance and localization of N-CAM during neural induction were studied in Pleurodeles waltl embryos and compared with recent contradictory results reported in Xenopus laevis. A monoclonal antibody raised against mouse N-CAM was used. In the nervous system of Pleurodeles, it recognized two glycoproteins of 180 and 140x10(3) M(r) which are the Pleurodeles equivalent of N-CAM-180 and -140. Using this probe for immunohistochemistry and immunocytochemistry, we showed that N-CAM was already expressed in presumptive ectoderm at the early gastrula stage. In late gastrula embryos, a slight increase in staining was observed in the neurectoderm, whereas the labelling persisted in the noninduced ectoderm. When induced ectodermal cells were isolated at the late gastrula stage and cultured in vitro up to 14 days, a faint polarized labelling of cells was observed initially. During differentiation, the staining increased and became progressively restricted to differentiating neurons.  相似文献   

19.
Zemchikhina VN 《Tsitologiia》2003,45(10):1027-1031
As shown elsewhere, the mixture of proteins secreted by lens epithelium cells in the process of microcultivation can selectively induce eye and forebrain tissues in the early gastrula ectoderm (Zemchikhina et al., 2000, 2003). In the present work, the dependence of inductive activity of this protein mixture on its concentration in culture solution has been studied. The test-system was the early gastrula ectoderm of Xenopus laevis frogs. The results of the experiments revealed no direct dependence of the spectrum of induced tissues on the concentration of the protein mixture. At a concentration of 0.5 mg/ml, brain appeared being accompanied by retina, pigmented epithelium, and lentoids, while at 0.031 mg/ml a perfect lens developed along with brain, retina and pigmented epithelium. At 0.125 mg/ml not only brain with accompanying structures but also muscle fibers were equally differentiated. These data suggest a new approach to the problem of dependence of the character of induction on the concentration of inducing factors, and they enable us to suppose that this dependence is not realized as a simple concentration dependence but may de determined by some adaptive, yet not elucidation processes.  相似文献   

20.
Induction of melanophores was examined by the sandwich method of explantation with embryonic tissues of Xenopus laevis +/+ and the white mutant, aP/aP. Interspecific combinations of tissues of Triturus taeniatus and Xenopus borealis were also used. The ectoderm used as the reacting system was taken from embriyos at various stages and combined with various tissues known to be melanogenic inductors. The following results were obtained: 1) The sources of melanophore induction in both +/+ and ap/ap studied by sandwich explantation were the same in both retinal pigmented epithelium and dermal melanophores: 2) Melanophores were induced in epidermal material from embryos at stages from the early gastrula to the late tail bud stage: 3) The presence of melanoblasts together with other ectomesenchymal cells in the neural crest is not sine qua non for their determination and differentiation: 4) On isolation of reacting material from the late gastrula, melanophores appeared in all cases. This shows that two hours contact between inductor tissues and the ectoderm is necessary and sufficient for melanophore induction: 5) Melanophore induction is not species-specific, but occurred in Xenopus ectoderm under the action of endomesoderm of Tr. taeniatus or X. borealis , and vice versa. The shapes and structures of melanophores induced were typical for the species from which the ectoderm was taken: 6) Melanogenic activity in the late gastrula stage has a gradient of distribution with a maximum in the prechordal plate: 7) In the mutant only the primary source of melanogenic inductors, the prechordal plate (PrP1), was active in stages both before and after its invagination: 8) Despite the fact that skin melanophores and retinal melanocytes have different genesis in development, all the present data suggest the identity of the mechanisms of melanin synthesizing machinery in the two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号