首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When the mode of inheritance of a disease is unknown, the LOD-score method of linkage analysis must take into account uncertainties in model parameters. We have previously proposed a parametric linkage test called "MFLOD," which does not require specification of disease model parameters. In the present study, we introduce two new model-free parametric linkage tests, known as "MLOD" and "MALOD." These tests are defined, respectively, as the LOD score and the admixture LOD score, maximized (subject to the same constraints as MFLOD) over disease-model parameters. We compared the power of these three parametric linkage tests and that of two nonparametric linkage tests, NPLall and NPLpairs, which are implemented in GENEHUNTER. With the use of small pedigrees and a fully informative marker, we found the powers of MLOD, NPLall, and NPLpairs to be almost equivalent to each other and not far below that of a LOD-score analysis performed under the assumption the correct genetic parameters. Thus, linkage analysis is not much hindered by uncertain mode of inheritance. The results also suggest that both parametric and nonparametric methods are suitable for linkage analysis of complex disorders in small pedigrees. However, whether these results apply to large pedigrees remains to be answered.  相似文献   

2.
It is well known that the asymptotic null distribution of the homogeneity lod score (LOD) does not depend on the genetic model specified in the analysis. When appropriately rescaled, the LOD is asymptotically distributed as 0.5 chi(2)(0) + 0.5 chi(2)(1), regardless of the assumed trait model. However, because locus heterogeneity is a common phenomenon, the heterogeneity lod score (HLOD), rather than the LOD itself, is often used in gene mapping studies. We show here that, in contrast with the LOD, the asymptotic null distribution of the HLOD does depend upon the genetic model assumed in the analysis. In affected sib pair (ASP) data, this distribution can be worked out explicitly as (0.5 - c)chi(2)(0) + 0.5chi(2)(1) + cchi(2)(2), where c depends on the assumed trait model. E.g., for a simple dominant model (HLOD/D), c is a function of the disease allele frequency p: for p = 0.01, c = 0.0006; while for p = 0.1, c = 0.059. For a simple recessive model (HLOD/R), c = 0.098 independently of p. This latter (recessive) distribution turns out to be the same as the asymptotic distribution of the MLS statistic under the possible triangle constraint, which is asymptotically equivalent to the HLOD/R. The null distribution of the HLOD/D is close to that of the LOD, because the weight c on the chi(2)(2) component is small. These results mean that the cutoff value for a test of size alpha will tend to be smaller for the HLOD/D than the HLOD/R. For example, the alpha = 0.0001 cutoff (on the lod scale) for the HLOD/D with p = 0.05 is 3.01, while for the LOD it is 3.00, and for the HLOD/R it is 3.27. For general pedigrees, explicit analytical expression of the null HLOD distribution does not appear possible, but it will still depend on the assumed genetic model.  相似文献   

3.
In genetic analysis of diseases in which the underlying model is unknown, "model free" methods-such as affected sib pair (ASP) tests-are often preferred over LOD-score methods, although LOD-score methods under the correct or even approximately correct model are more powerful than ASP tests. However, there might be circumstances in which nonparametric methods will outperform LOD-score methods. Recently, Dizier et al. reported that, in some complex two-locus (2L) models, LOD-score methods with segregation analysis-derived parameters had less power to detect linkage than ASP tests. We investigated whether these particular models, in fact, represent a situation that ASP tests are more powerful than LOD scores. We simulated data according to the parameters specified by Dizier et al. and analyzed the data by using a (a) single locus (SL) LOD-score analysis performed twice, under a simple dominant and a recessive mode of inheritance (MOI), (b) ASP methods, and (c) nonparametric linkage (NPL) analysis. We show that SL analysis performed twice and corrected for the type I-error increase due to multiple testing yields almost as much linkage information as does an analysis under the correct 2L model and is more powerful than either the ASP method or the NPL method. We demonstrate that, even for complex genetic models, the most important condition for linkage analysis is that the assumed MOI at the disease locus being tested is approximately correct, not that the inheritance of the disease per se is correctly specified. In the analysis by Dizier et al., segregation analysis led to estimates of dominance parameters that were grossly misspecified for the locus tested in those models in which ASP tests appeared to be more powerful than LOD-score analyses.  相似文献   

4.
ABSTRACT: BACKGROUND: In the last years GWA studies have successfully identified common SNPs associated with complex diseases. However, most of the variants found this way account for only a small portion of the trait variance. This fact leads researchers to focus on rare-variant mapping with large scale sequencing, which can be facilitated by using linkage information. The question arises why linkage analysis often fails to identify genes when analyzing complex diseases. Using simulations we have investigated the power of parametric and nonparametric linkage statistics (KC-LOD, NPL, LOD and MOD scores), to detect the effect of genes responsible for complex diseases using different pedigree structures. RESULTS: As expected, a small number of pedigrees with less than three affected individuals has low power to map disease genes with modest effect. Interestingly, the power decreases when unaffected individuals are included in the analysis, irrespective of the true mode of inheritance. Furthermore, we found that the best performing statistic depends not only on the type of pedigrees but also on the true mode of inheritance. CONCLUSIONS: When applied in a sensible way linkage is an appropriate and robust technique to map genes for complex disease. Unlike association analysis, linkage analysis is not hampered by allelic heterogeneity. So, why does linkage analysis often fail with complex diseases? Evidently, when using an insufficient number of small pedigrees, one might miss a true genetic linkage when actually a real effect exists. Furthermore, we show that the test statistic has an important effect on the power to detect linkage as well. Therefore, a linkage analysis might fail if an inadequate test statistic is employed. We provide recommendations regarding the most favorable test statistics, in terms of power, for a given mode of inheritance and type of pedigrees under study, in order to reduce the probability to miss a true linkage.  相似文献   

5.
OBJECTIVE: p Values are inaccurate for model-free linkage analysis using the conditional logistic model if we assume that the LOD score is asymptotically distributed as a simple mixture of chi-square distributions. When analyzing affected relative pairs alone, permuting the allele sharing of relative pairs does not lead to a useful permutation distribution. As an alternative, we have developed regression prediction models that provide more accurate p values. METHODS: Let E(alpha) be the empirical p value, which is the proportion of statistical tests whose LOD score under the null hypothesis exceeds a threshold determined by alpha, the nominal single test significance value. We used simulated data to obtain values of E(alpha) and compared them with alpha. We also developed a regression model, based on sample size, number of covariates in the model, alpha and marker density, to derive predicted p values for both single-point and multipoint analyses. To evaluate our predictions we used another set of simulated data, comparing the Ealpha for these data with those obtained by using the prediction model, referred to as predicted p values (P(alpha)). RESULTS: Under almost all circumstances the values of P(alpha) were closer to the E(alpha) than were the values of alpha. CONCLUSION: The regression models suggested by our analysis provide more accurate alternative p values for model-free linkage analysis when using the conditional logistic model.  相似文献   

6.
Alcohol dependence is a typical example of a complex trait that is governed by several genes and for which the mode of inheritance is unknown. We analyzed the microsatellite markers and the Affymetrix single-nucleotide polymorphisms (SNPs) for a subset of the Collaborative Study on the Genetics of Alcoholism family sample, 93 pedigrees of Caucasian ancestry comprising 919 persons, 390 of whom are affected according to DSM III-R and Feighner criteria. In particular, we performed parametric single-marker linkage analysis using MLINK of the LINKAGE package (for the microsatellite data), as well as multipoint MOD-score analysis with GENEHUNTER-MODSCORE (for the microsatellite and SNP data). By use of two liability classes, different penetrances were assigned to males and females. In order to investigate parent-of-origin effects, we calculated MOD scores under trait models with and without imprinting. In addition, for the microsatellite data, the MOD-score analysis was performed with sex-averaged as well as sex-specific maps. The highest linkage peaks were obtained on chromosomes 1, 2, 7, 10, 12, 13, 15, and 21. There was evidence for paternal imprinting at the loci on chromosomes 2, 10, 12, 13, 15, and 21. A tendency to maternal imprinting was observed at two loci on chromosome 7. Our findings underscore the fact that an adequate modeling of the genotype-phenotype relation is crucial for the genetic mapping of a complex trait.  相似文献   

7.
8.
In complex disease studies, it is crucial to perform multipoint linkage analysis with many markers and to use robust nonparametric methods that take account of all pedigree information. Currently available methods fall short in both regards. In this paper, we describe how to extract complete multipoint inheritance information from general pedigrees of moderate size. This information is captured in the multipoint inheritance distribution, which provides a framework for a unified approach to both parametric and nonparametric methods of linkage analysis. Specifically, the approach includes the following: (1) Rapid exact computation of multipoint LOD scores involving dozens of highly polymorphic markers, even in the presence of loops and missing data. (2) Non-parametric linkage (NPL) analysis, a powerful new approach to pedigree analysis. We show that NPL is robust to uncertainty about mode of inheritance, is much more powerful than commonly used nonparametric methods, and loses little power relative to parametric linkage analysis. NPL thus appears to be the method of choice for pedigree studies of complex traits. (3) Information-content mapping, which measures the fraction of the total inheritance information extracted by the available marker data and points out the regions in which typing additional markers is most useful. (4) Maximum-likelihood reconstruction of many-marker haplotypes, even in pedigrees with missing data. We have implemented NPL analysis, LOD-score computation, information-content mapping, and haplotype reconstruction in a new computer package, GENEHUNTER. The package allows efficient multipoint analysis of pedigree data to be performed rapidly in a single user-friendly environment.  相似文献   

9.
Deng W  Chen H  Li Z 《Genetics》2006,172(2):1349-1358
Often in genetic research, presence or absence of a disease is affected by not only the trait locus genotypes but also some covariates. The finite logistic regression mixture models and the methods under the models are developed for detection of a binary trait locus (BTL) through an interval-mapping procedure. The maximum-likelihood estimates (MLEs) of the logistic regression parameters are asymptotically unbiased. The null asymptotic distributions of the likelihood-ratio test (LRT) statistics for detection of a BTL are found to be given by the supremum of a chi2-process. The limiting null distributions are free of the null model parameters and are determined explicitly through only four (backcross case) or nine (intercross case) independent standard normal random variables. Therefore a threshold for detecting a BTL in a flanking marker interval can be approximated easily by using a Monte Carlo method. It is pointed out that use of a threshold incorrectly determined by reading off a chi2-probability table can result in an excessive false BTL detection rate much more severely than many researchers might anticipate. Simulation results show that the BTL detection procedures based on the thresholds determined by the limiting distributions perform quite well when the sample sizes are moderately large.  相似文献   

10.
The Genetic Analysis Workshop 14 simulated data presents an interesting, challenging, and plausible example of a complex disease interaction in a dataset. This paper summarizes the ease of detection for each of the simulated Kofendrerd Personality Disorder (KPD) genes across all of the replicates for five standard linkage statistics. Using the KPD affection status, we have analyzed the microsatellite markers flanking each of the disease genes, plus an additional 2 markers that were not linked to any of the disease loci. All markers were analyzed using the following two-point linkage methods: 1) a MMLS, which is a standard admixture LOD score maximized over theta, alpha, and mode of inheritance, 2) a MLS calculated by GENEHUNTER, 3) the Kong and Cox LOD score as computed by MERLIN, 4) a MOD score (standard heterogeneity LOD maximized over theta, alpha, and a grid of genetic model parameters), and 5) the PPL, a Bayesian statistic that directly measures the strength of evidence for linkage to a marker. All of the major loci (D1-D4) were detectable with varying probabilities in the different populations. However, the modifier genes (D5 and D6) were difficult to detect, with similar distributions under the null and alternative across populations and statistics. The pooling of the four datasets in each replicate (n = 350 pedigrees) greatly improved the chance of detecting the major genes using all five methods, but failed to increase the chance to detect D5 and D6.  相似文献   

11.
Nonsyndromic cleft lip with or without cleft palate (CL-P) is a common congenital anomaly with incidence ranging from 1 in 300 to 1 in 2,500 live births. We analyzed two Indian pedigrees (UR017 and UR019) with isolated, nonsyndromic CL-P, in which the anomaly segregates as an autosomal dominant trait. The phenotype was variable, ranging from unilateral to bilateral CL-P. A genomewide linkage scan that used approximately 10,000 SNPs was performed. Nonparametric linkage (NPL) analysis identified 11 genomic regions (NPL>3.5; P<.005) that could potentially harbor CL-P susceptibility variations. Among those, the most significant evidence was for chromosome 13q33.1-34 at marker rs1830756 (NPL=5.57; P=.00024). This was also supported by parametric linkage; MOD score (LOD scores maximized over genetic model parameters) analysis favored an autosomal dominant model. The maximum LOD score was 4.45, and heterogeneity LOD was 4.45 (alpha =100%). Haplotype analysis with informative crossovers enabled the mapping of the CL-P locus to a region of approximately 20.17 cM (7.42 Mb) between SNPs rs951095 and rs726455. Thus, we have identified a novel genomic region on 13q33.1-34 that harbors a high-risk variant for CL-P in these Indian families.  相似文献   

12.
Distribution of lod scores under uncertain mode of inheritance.   总被引:4,自引:4,他引:0       下载免费PDF全文
We consider probability distributions of alternative lod statistics, differing in their treatment of segregation parameters when mode of inheritance is uncertain. A particular pedigree structure and a dominant genetic system displaying incomplete penetrance are analyzed. Lod scores calculated assuming an incorrect segregation model appear to conform quite well to the chi 2 distribution in the absence of linkage. In the presence of linkage, some power is lost. However, if lod scores are calculated under several different segregation models and the best one is accepted, opportunity for chance occurrence of high lod scores is enhanced. The distribution is still chi 2, but with extra degrees of freedom. These results hold over a wide range of sample sizes and segregation models, including small samples and low levels of penetrance.  相似文献   

13.
Model-free linkage analysis using likelihoods.   总被引:6,自引:2,他引:4       下载免费PDF全文
Misspecification of transmission model parameters can produce artifactually negative lod scores at small recombination fractions and in multipoint analysis. To avoid this problem, we have tried to devise a test that aims to detect a genetic effect at a particular locus, rather than attempting to estimate the map position of a locus with specified effect. Maximizing likelihoods over transmission model parameters, as well as linkage parameters, can produce seriously biased parameter estimates and so yield tests that lack power for the detection of linkage. However, constraining the transmission model parameters to produce the correct population prevalence largely avoids this problem. For computational convenience, we recommend that the likelihoods under linkage and non-linkage are independently maximized over a limited set of transmission models, ranging from Mendelian dominant to null effect and from null effect to Mendelian recessive. In order to test for a genetic effect at a given map position, the likelihood under linkage is maximized over admixture, the proportion of families linked. Application to simulated data for a wide range of transmission models in both affected sib pairs and pedigrees demonstrates that the new method is well behaved under the null hypothesis and provides a powerful test for linkage when it is present. This test requires no specification of transmission model parameters, apart from an approximate estimate of the population prevalence. It can be applied equally to sib pairs and pedigrees, and, since it does not diminish the lod score at test positions very close to a marker, it is suitable for application to multipoint data.  相似文献   

14.
For complex diseases, recent interest has focused on methods that take into account joint effects at interacting loci. Conditioning on effects of disease loci at known locations can lead to increased power to detect effects at other loci. Moreover, use of joint models allows investigation of the etiologic mechanisms that may be involved in the disease. Here we present a method for simultaneous analysis of the joint genetic effects at several loci that uses affected relative pairs. The method is a generalization of the two-locus LOD-score analysis for affected sib pairs proposed by Cordell et al. We derive expressions for the relative risk, lambdaR, to a relative of an affected individual, in terms of the additive and epistatic components of variance at an arbitrary number of disease loci, and we show how these can be used to fit a likelihood model to the identity-by-descent sharing among pairs of affected relatives in extended pedigrees. We implement the method by use of a stepwise strategy in which, given evidence of linkage to disease at m-1 locations on the genome, we calculate the conditional likelihood curve across the genome for an mth disease locus, using multipoint methods similar to those proposed by Kruglyak et al. We evaluate the properties of our method by use of simulated data and present an application to real data from families with insulin-dependent diabetes mellitus.  相似文献   

15.
One of the major challenges facing genome-scan studies to discover disease genes is the assessment of the genomewide significance. The assessment becomes particularly challenging if the scan involves a large number of markers collected from a relatively small number of meioses. Typically, this assessment has two objectives: to assess genomewide significance under the null hypothesis of no linkage and to evaluate true-positive and false-positive prediction error rates under alternative hypotheses. The distinction between these goals allows one to formulate the problem in the well-established paradigm of statistical hypothesis testing. Within this paradigm, we evaluate the traditional criterion of LOD score 3.0 and a recent suggestion of LOD score 3.6, using the Monte Carlo simulation method. The Monte Carlo experiments show that the type I error varies with the chromosome length, with the number of markers, and also with sample sizes. For a typical setup with 50 informative meioses on 50 markers uniformly distributed on a chromosome of average length (i.e., 150 cM), the use of LOD score 3.0 entails an estimated chromosomewide type I error rate of.00574, leading to a genomewide significance level >.05. In contrast, the corresponding type I error for LOD score 3.6 is.00191, giving a genomewide significance level of slightly <.05. However, with a larger sample size and a shorter chromosome, a LOD score between 3.0 and 3.6 may be preferred, on the basis of proximity to the targeted type I error. In terms of reliability, these two LOD-score criteria appear not to have appreciable differences. These simulation experiments also identified factors that influence power and reliability, shedding light on the design of genome-scan studies.  相似文献   

16.
The power to detect linkage by the LOD-score method is investigated here for diseases that depend on the effects of two genes. The classical strategy is, first, to detect a major-gene (MG) effect by segregation analysis and, second, to seek for linkage with genetic markers by the LOD-score method using the MG parameters. We already showed that segregation analysis can lead to evidence for a MG effect for many two-locus models, with the estimates of the MG parameters being very different from those of the two genes involved in the disease. We show here that use of these MG parameter estimates in the LOD-score analysis may lead to a failure to detect linkage for some two-locus models. For these models, use of the sib-pair method gives a non-negligible increase of power to detect linkage. The linkage-homogeneity test among subsamples differing for the familial disease distribution provides evidence of parameter misspecification, when the MG parameters are used. Moreover, for most of the models, use of the MG parameters in LOD-score analysis leads to a large bias in estimation of the recombination fraction and sometimes also to a rejection of linkage for the true recombination fraction. A final important point is that a strong evidence of an MG effect, obtained by segregation analysis, does not necessarily imply that linkage will be detected for at least one of the two genes, even with the true parameters and with a close informative marker.  相似文献   

17.
We present two extensions to linkage analysis for genetically complex traits. The first extension allows investigators to perform parametric (LOD-score) analysis of traits caused by imprinted genes-that is, of traits showing a parent-of-origin effect. By specification of two heterozygote penetrance parameters, paternal and maternal origin of the mutation can be treated differently in terms of probability of expression of the trait. Therefore, a single-disease-locus-imprinting model includes four penetrances instead of only three. In the second extension, parametric and nonparametric linkage analysis with two trait loci is formulated for a multimarker setting, optionally taking imprinting into account. We have implemented both methods into the program GENEHUNTER. The new tools, GENEHUNTER-IMPRINTING and GENEHUNTER-TWOLOCUS, were applied to human family data for sensitization to mite allergens. The data set comprises pedigrees from England, Germany, Italy, and Portugal. With single-disease-locus-imprinting MOD-score analysis, we find several regions that show at least suggestive evidence for linkage. Most prominently, a maximum LOD score of 4.76 is obtained near D8S511, for the English population, when a model that implies complete maternal imprinting is used. Parametric two-trait-locus analysis yields a maximum LOD score of 6.09 for the German population, occurring exactly at D4S430 and D18S452. The heterogeneity model specified for analysis alludes to complete maternal imprinting at both disease loci. Altogether, our results suggest that the two novel formulations of linkage analysis provide valuable tools for genetic mapping of multifactorial traits.  相似文献   

18.
Objective: We present a parametric method for linkage analysis of quantitative phenotypes. The method provides a test for linkage as well as an estimate of different phenotype parameters. We have implemented our new method in the program GENEHUNTER-QMOD and evaluated its properties by performing simulations. Methods: The phenotype is modeled as a normally distributed variable, with a separate distribution for each genotype. Parameter estimates are obtained by maximizing the LOD score over the normal distribution parameters with a gradient-based optimization called PGRAD method. Results: The PGRAD method has lower power to detect linkage than the variance components analysis (VCA) in case of a normal distribution and small pedigrees. However, it outperforms the VCA and Haseman-Elston regression for extended pedigrees, nonrandomly ascertained data and non-normally distributed phenotypes. Here, the higher power even goes along with conservativeness, while the VCA has an inflated type I error. Parameter estimation tends to underestimate residual variances but performs better for expectation values of the phenotype distributions. Conclusion: With GENEHUNTER-QMOD, a powerful new tool is provided to explicitly model quantitative phenotypes in the context of linkage analysis. It is freely available at http://www.helmholtz-muenchen.de/genepi/downloads.  相似文献   

19.
Lee OE  Braun TM 《Biometrics》2012,68(2):486-493
Inference regarding the inclusion or exclusion of random effects in linear mixed models is challenging because the variance components are located on the boundary of their parameter space under the usual null hypothesis. As a result, the asymptotic null distribution of the Wald, score, and likelihood ratio tests will not have the typical χ(2) distribution. Although it has been proved that the correct asymptotic distribution is a mixture of χ(2) distributions, the appropriate mixture distribution is rather cumbersome and nonintuitive when the null and alternative hypotheses differ by more than one random effect. As alternatives, we present two permutation tests, one that is based on the best linear unbiased predictors and one that is based on the restricted likelihood ratio test statistic. Both methods involve weighted residuals, with the weights determined by the among- and within-subject variance components. The null permutation distributions of our statistics are computed by permuting the residuals both within and among subjects and are valid both asymptotically and in small samples. We examine the size and power of our tests via simulation under a variety of settings and apply our test to a published data set of chronic myelogenous leukemia patients.  相似文献   

20.
Recently, data on loss of constitutional heterozygosity (LOH) have been used by several groups to increase the power to detect linkage in pedigrees with an inherited cancer predisposition. This approach assumes that the predisposition is due to the inheritance of the defective copy of a tumor suppressor. In order to assess the gain of power expected from the inclusion of LOH data, we simulated segregation and somatic loss of alleles in pedigrees consisting of an affected pair of first-degree relatives. We explored the effects of pedigree structure, frequency of loss, penetrance, and recombination rate on the expected LOD score. The results indicate that, for establishment of genetic linkage, isolated parent-offspring pairs can be as informative as sib pairs and that they could represent an additional source of information in linkage studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号