首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 528 毫秒
1.
The pattern of muscles in the actively swimming predatory rotifer Asplanchnopus multiceps is revealed by staining with tetramethyl-rhodamine isothiocyanate (TRITC)-labelled phalloidin and confocal scanning laser microscopy (CSLM). The major components of the musculature are: prominent semicircular muscles of the corona; paired lateral, dorsal and ventral retractors in the trunk; a network of six seemingly complete circular muscles and anastomosing longitudinal muscles in the trunk; two short foot retractors, originating from a transverse muscle in the lower third of the trunk. The sphincter of the corona marks the boundary between the head and the trunk. The muscular patterns in rotifers with different lifestyles differ clearly, therefore, the muscular patterns seem to be determined by the mode of locomotion and feeding behaviour.  相似文献   

2.
Musculature of two species of rotifers Testudinella patina (Testudinellidae) and Platyias patulus (Brachiomidae) was studied in confocal laser scanning microscope (CLSM) using fluorescent-labeled phalloidin. It includes cutaneous, visceral, and cutaneus-visceral musculature. The common pattern of structure of the cutaneous musculature is represented by postcoronal circular or transverse muscles and connected with them 2–3 pairs of retractors of the trunk, dorsolateral muscles (17-4), two pairs or bundles of lateral retractors of the corona, circular muscles of the foot, and 10-2 retractors of the foot. Visceral musculature includes muscles of the mastax of both kinds. Spiral-like muscle of cloaca of the T. patina and associated with it V-shaped one as well as strong dorsolateral retractors consisting of 6 longitudinal muscle bundles are typical of Testudinellidae only. Three pairs of cutaneus-visceral muscles bind the musculature of mastax with the body surface in T. patina. Differences in localization and thickness of some elements of musculature of these species are determined by morphological peculiarities of structure of the corona, mastax, and foot, as well as by the rotifer body shape.  相似文献   

3.
The musculature of Testudinella patina was visualized using phalloidin-linked fluorescent dye by confocal laser scanning microscopy. The conspicuous broad retractors appear to be made up of five separate fibers, of which three anchor in the neck region whereas two extend into the corona. Besides the broad retractors, a total of five paired longitudinal retractors are present and all of them extend into the corona. Incomplete circular muscles are found in groups in the neck region and in the medial and posterior parts of the trunk. The foot musculature comprises eight thin ventral foot muscles and six thicker dorsal foot muscles that all extend from the foot basis to the distal part of the foot. At the basis of the foot, each of the dorsal foot muscles anchors on a smaller, S-shaped subterminal foot muscle. The foot musculature furthermore comprises one pair of paraterminal foot muscles that each anchors basally on a subterminal foot muscle, extends into the most proximal part of the foot and attaches on one of the dorsal foot muscles. The visceral musculature is composed of extremely delicate fibers and is restricted to an area around and posterior to the foot opening. The presence of incomplete circular muscles supports that these muscles are a basal trait for Rotifera, whereas the morphology of the broad retractors and foot muscles is much more specialized and may be autapomorphic for Testudinella or alternatively for this genus and its closest relatives. The present results stress that revealing muscles by staining may produce new information from even well-investigated species, and that this information may contribute to a better understanding of functional as well as phylogenetic aspects of rotifer biology.  相似文献   

4.
Abstract. The body-wall and visceral musculature of Notholca acuminata was visualized using phalloidin-linked fluorescent dye under confocal laser scanning microscopy. The body-wall musculature includes dorsal, lateral, and ventral pairs of longitudinally oriented body retractor muscles, two pairs of head retractors, three pairs of incomplete circular muscles, which are modified into dorso-ventral muscles, and a single pair of dorsolateral muscles. The visceral musculature consists of a complex of thick muscles associated with the mastax, as well as several sets of delicate fibers associated with the corona, stomach, gut, and cloaca, including thin longitudinal gut fibers and viscero-cloacal fibers, never before reported in other species of rotifers. The dorsal, lateral, and ventral retractor muscles and the incomplete circular muscles associated with the body wall appear to be apomorphies for the Rotifera. Muscle-revealing staining shows promise for providing additional information on previously unrecognized complexity in rotifer musculature that will be useful in functional morphology and phylogenetic analyses.  相似文献   

5.
Comparative study of somatic musculature in illoricate rotifer Asplanchina girodi Guerne, 1888 and loricate Trichotria pocillum (Müller, 1776) has been carried out by the method of phalloidin fluorescence and confocal laser scanning microscopy. Similar layering of muscles is revealed, while significant differences are observed in other aspects. Postcoronal transverse muscle of A. girodi and the dorsal portion of the anterior circular muscle of T. pocillum serve as attachment sites for the refractor muscles. All retractors are formed by smooth muscles or striated muscles, except the lateral retractors of A. girodi, which are formed by the most powerful oblique muscles. In A. girodi there are three pairs of retractors, ten longitudinal muscles, and five circular muscles, with a thick muscular plexus connecting them. In T. pocillum there are four pairs of retractors, five transverse muscles, strong foot retractors, and an arched structure of the head region (new for rotifers). Eight pairs of dorsoventral muscles, as identified in T. pocillum, are completely absent in A. girodi.  相似文献   

6.
Summary A whole-mount fluorescence technique using rhodamine-labeled phalloidin was used to demonstrate for the first time the whole muscle system of a free-living plathelminth, Macrostomum hystricinum marinum. As expected, the body-wall musculature consisted of circular, longitudinal, and diagonal fibers over the trunk. Also distinct were the musculature of the gut and of the mouth and pharynx (circular, longitudinal, and radial). Dorsoventral fibers where restricted in this species to the head and tail regions. Circular muscle fibers in the body wall were often grouped into bands of up to four parallel strands. Surprisingly, diagonal fibers formed two distinct sets, one dorsal and one ventral. Certain diagonal muscle fibers entered the wall of the mouth and were continuous with some longitudinal muscles of the pharynx. Dorsoventral fibers in the rostrum occurred partly in regularly spaced pairs, a fact not known for free-living Plathelminthes. All muscle fibers appeared to be mononucleated. During postembryonic development, the number of circular muscle fibers can be estimated to increase by a factor of 3.5 and that of longitudinal muscles by a factor of 2. Apparently as many as 700–800 circular muscle cells must be added in the region of the gut alone during postembryonic development. Stem cells (neoblasts), identified by TEM in the caudalmost region of the gut, lie along the lateral nerve cords. In the same body region most perikarya of circular muscle cells occurred in a similar position. This suggests that the nucleus-containing part of the cell remains in the position where differentiation starts.  相似文献   

7.
Organization of muscles in microinvertebrates has often been studied to answer functional questions and understand phylogenetic relationships among taxa. In this study, the musculature of two bdelloid species, Adineta ricciae and Macrotrachela quadricornifera , was illustrated, and their organization was compared with other rotifer taxa to generate possible hypotheses of evolutionary relationships among Rotifera. The two species share a common habitat but differ from each other in feeding and locomotion. A. ricciae feeds on the biofilm by scraping it, is unable to swim, and slides on the head cilia using the foot to propel over the substratum. M. quadricornifera feeds by filtration, can swim, and advances by looping in a leech-like motion. Their musculature, stained with TRITC-phalloidin, was observed using confocal laser scanning microscopy. Major differences between the two species were observed in the muscles of head and foot, possibly reflecting differences in their life style. Muscles of the trunk were similarly arranged: circular muscles surrounded longitudinal bands, which were inserted at different points on the body wall. In both bdelloids, circular muscles of the trunk were incomplete ventrally, a condition also present in Seison and in soft-bodied monogononts from benthos. Within rotifers, circular muscles in the form of complete rings are present in acanthocephalans and in soft-bodied planktonic monogononts but are absent in loricate monogononts, which generally possess dorsoventral bands. The diversity of muscle organization among rotifers was interpreted and discussed.  相似文献   

8.
By combining phalloidin‐TRITC staining with confocal scanning laser microscopy (CSLM), the pattern of the musculature in two species of Rotifera, Euchlanis dilatata unisetata and Brachionus quadridentatus is revealed. The same general muscle pattern prevails in both species. The major components of the body wall musculature are: 1. retractor muscles (5 pairs in E. dilatata unisetata and 3 pairs in B. quadridentatus); 2. Two pairs of dorso‐ventral muscles; 3. Two pairs of perpendicular muscles (in E. dilatata unisetata); 4. retractors of the corona (median, lateral and ventral); 5. Foot retractors. In addition, three pairs of cutaneo‐visceral muscles and visceral muscles (including mastax muscles) are described. The sphincter of the corona was found only in B. quadridentatus. The high degree of muscle differentiation points to a high level of development of rotifer muscular system.  相似文献   

9.
The musculature of adult specimens of Cossura pygodactylata was studied by means of F-actin labelling and confocal laser scanning microscopy (CLSM). Their body wall is comprised of five longitudinal muscle bands: two dorsal, two ventral and one ventromedial. Complete circular fibres are found only in the abdominal region, and they are developed only on the border of the segments. Thoracic and posterior body regions contain only transverse fibres ending near the ventral longitudinal bands. Almost-complete rings of transverse muscles, with gaps on the dorsal and ventral sides, surround the terminal part of the pygidium. Four longitudinal bands go to the middle of the prostomium and 5–14 paired dorso-ventral muscle fibres arise in its distal part. Each buccal tentacle contains one thick and two thin longitudinal muscle filaments; thick muscle fibres from all tentacles merge, forming left and right tentacle protractors rooted in the dorsal longitudinal bands of the body wall. The circumbuccal complex includes well-developed upper and lower lips. These lips contain an outer layer of transverse fibres, and the lower lip also contains inner oblique muscles going to the dorsal longitudinal bands. The branchial filament contains two longitudinal muscle fibres that do not connect with the body musculature. The parapodial complex includes strong intersegmental and segmental oblique muscles in the thoracic region only; chaetal retractors, protractors and muscles of the body wall are present in all body regions. Muscle fibres are developed in the dorsal and ventral mesenteries. One semi-circular fibre is developed on the border of each segment and is most likely embedded in the dissepiment. The intestine has thin circular fibres along its full length. The dorsal blood vessel has strong muscle fibres that cover its anterior part, which is called the heart. It consists of short longitudinal elements forming regular rings and inner partitions. The musculature of C. pygodactylata includes some elements that are homologous with similar muscular components in other polychaetes (i.e., the body wall and most parapodial muscles) and several unique features, mostly at the anterior end.  相似文献   

10.
Species of Hexarthra and Polyarthra are freshwater rotifers with well-known escape behaviors that result from interactions with planktonic predators. Both rotifers bear a suite of mobile appendages that function in evasive maneuvers and saltatory jumps through the water column, but the anatomical and functional bases of these actions are poorly understood. Here, we use a combination of phalloidin staining, confocal laser scanning microscopy, and video analysis to describe the morphology of the somatic muscles that supply the mobile appendages in order to understand how they function in escape behavior. Results show that species of Hexarthra, which bear six radially distributed limbs, possess a highly complex trunk musculature that supplies the inside of each limb with its own abductor and adductor muscles, i.e., a direct muscle supply. The singular dorsal and ventral limbs each receive a pair of large abductor and adductor muscles (four muscles total per limb), while the paired dorsolateral and ventrolateral limbs each receives three muscles (two abductors, one adductor per limb). Contraction of the abductor muscles creates a power stroke in the form of an anterior sweep of the limbs, which leads to a three-dimensional tumbling of the rotifer through the water column. Alternatively, species of Polyarthra possess 12 blade-like appendages that are arranged into four equal bundles; each bundle receives an indirect muscle supply that attaches to the shoulder of the paddles. A single longitudinal paddle muscle supplies each dorsolateral bundle, while a pair of longitudinal paddle muscles supplies each ventrolateral bundle. Contraction of these muscles, whether singly or in concert, functions to abduct the paddles in a power stroke, leading to rotation of the body and movement of the rotifer. The recovery stroke is hypothesized to be a multi-step process that begins with reorientation of the appendages prior to adduction, followed by contraction of various muscles to antagonize the paddle muscles. In total, these observations reveal novel complexities in the rotifer muscular system that aids our understanding of the biophysics of predator avoidance in appendage-bearing rotifers.  相似文献   

11.
Fluorescence-labelled phalloidin in combination with confocal laser scanning microscopy (cLSM) has been used to reconstruct the body musculature in Encentrum mucronatum and Dicranophorus forcipatus in order to gain insight into the architecture of body musculature in representatives of the hitherto uninvestigated Dicranophoridae.

In both species, a system of outer circular and inner longitudinal muscles has been found. In E. mucronatum, seven circular muscles (musculi circulares I–VII) and six paired longitudinal muscles (musculi longitudinales I–VI) have been identified. In D. forcipatus, eight circular muscles (musculi circulares I–VIII) and nine paired longitudinal muscles (musculi longitudinales I–IX) are present. In both species, some of the longitudinal muscles span the whole specimen, while others are shorter and connect head and trunk or foot and trunk. Differences in shape and extension of the circular muscles in both species are related to differences in structure of the trunk integument.

Surveying the literature on rotifer musculature, muscles identified in this study are homologised across Rotifera and given individual names. Based on the study of E. mucronatum and D. forcipatus and previous studies on other rotifers, a system of musculature in the ground pattern of Ploima comprising at least three circular muscles (pars coronalis, corona sphincter, musculus circumpedalis) and three pairs of longitudinal muscles (musculi longitudinales ventrales, musculi longitudinales dorsales and musculi longitudinales capitum) is suggested.  相似文献   


12.
The entire muscle system of Nerilla antennata, Nerillidium sp. and Trochonerilla mobilis was three-dimensionally reconstructed from whole mounts. In juvenile and adult specimens the F-actin musculature subset was stained with FITC-conjugated phalloidin and visualized with a confocal laser scanning microscope (cLSM). The muscle system shows the following major organization: 1) circular muscles are totally absent in the body wall; 2) the longitudinal muscles are confined in two ventral and two dorsal thick bundles; 3) additional longitudinal muscles are located in the ventro- and dorsomedian axis; 4) three segmental pairs of ventral oblique muscles elongate into the periphery: the main dorsoventral muscles that run along the body side posterior and dorsally and the anterior and posterior oblique parapodial muscles, which contribute to the ventral chaetal sacs; 5) one segmental pair of dorsal oblique parapodial muscles, contributing to the dorsal chaetal sacs; 6) five to seven small dorsoventral muscles per segment; and 7) complex head and pharyngeal musculature. These results support the belief that absence of circular muscles in the polychaete body wall is much more widely distributed than is currently presumed.  相似文献   

13.
The gastrotrich muscular system is characterized by band-like muscles arranged in orientations that reflect both function and phylogeny. To better understand the evolution of the Dactylopodolidae, a putative primitive lineage and potential sister group to other extant macrodasyidans, we have used a fluorescent phalloidin stain to visualize muscle patterns in the marine gastrotrich Dactylopodola baltica and eight other species of Macrodasyida from four families. The musculature of D. baltica is arranged as a series of circular, helicoidal and longitudinal bands around the digestive tract. Circular muscles and longitudinal muscles were found in splanchnic and somatic positions. Helicoidal muscles, in 50–60° angles with respect to the longitudinal body axis, surrounded circular and longitudinal splanchnic muscles in a spiralling orientation. The largest longitudinal muscles were the ventrolateral bands composed of numerous cross-striated myocytes arranged in parallel arrays. The overall arrangement of the muscular system of D. baltica showed several similarities to other macrodasyidan gastrotrichs, including the presence and location of circular, helicoidal and longitudinal muscles, their orientation with respect to the longitudinal body axis and their points of insertion. Unique to D. baltica is the anterior and posterior arrangement of the ventrolateral muscles and the orientation of muscle branches that supply the ventral and dorsal aspects of the pharynx. Muscle data from observations of D. baltica and eight additional species were coded as phylogenetic characters, mapped onto a cladogram and compared to an existing phylogeny of the order. The direction of evolutionary change in specific muscle groups was inferred, as was the ground pattern of muscles for the Macrodasyida.  相似文献   

14.
The musculature in the rotifer species Proales daphnicola, P. reinhardti and P. fallaciosa was stained with phalloidin-labeled fluorescent dye and compared using confocal laser scanning microscopy. All three species share several homologous muscle systems, but each systems detailed morphology varies among the species both concerning appearance, number and location. The obtained results were compared with data from other rotifers and it was concluded that the muscles pars coronalis and the corona sphincter probably represent conditions in Ploima or Monogononta, while incomplete circular muscles and dorsal and ventral trunk retractors might be part of the eurotatorian ground pattern.  相似文献   

15.
The somatic muscular systems of two species of Seisonacea (Rotifera), Seison nebaliae and Paraseison annulatus, are described using fluorescently labelled phalloidin in combination with confocal laser scanning microscopy. Their overall muscular arrangement is similar and consists of segmentally organised longitudinal fibres that extend the length of the body and are surrounded by semi-circular (= incomplete) bands. However, differences in the musculature between the two species are present and possibly reflect specific adaptations in feeding strategy and locomotion related to the occupation of individual niches on their host, the leptostracan crustacean N. bipes. For example, S. nebaliae has semi-circular muscles in the head region only, while P. annulatus possesses incomplete circular muscles also in the trunk region; furthermore, there are also differences in the arrangements and number of longitudinal muscles. The muscular systems of all rotifer species examined so far are compared in order to establish the ground pattern of the last putative ancestor as well as to seek for traits of systematic importance. Results from both species corroborate earlier hypotheses on the arrangement of muscles in the putative common ancestor of Rotifera, which suggested an orthogonal arrangement consisting of a series of probably continuous (not segmental) inner longitudinal muscles, surrounded by semi-circular fibres, ventrally opened. However, significant morphological and ecological variations among taxa investigated so far show that a consistent correlation between muscular traits and specific ecological features and/or phylogeny is still far from being clear. Hence, musculature of additional taxa, representing the systematic width and occupying a diverse range of habitats, should be investigated.  相似文献   

16.
Functional morphology of muscles in Tetranchyroderma papii (Gastrotricha)   总被引:2,自引:0,他引:2  
Movement in gastrotrichs is powered by an interaction of ventral cilia and muscles. In interstitial gastrotrichs, movement among sand grains often requires the additional use of adhesive tubules that allow for behaviors such as escape responses and changes in body position. In this study, we describe orientations and possible mechanical actions of muscles during locomotion in the gastrotrich, Tetranchyroderma papii (Macrodasyida). Fluorescently labeled phalloidin was used to stain F-actin of muscles and visualize muscle patterns. Muscles are arranged in circular, longitudinal, and helicoidal orientations. Circular muscles were in the form of discreet rings around the pharynx and intestine, and contribute to the structure of the oral hood. Longitudinal muscles are largely concentrated on the ventral and ventrolateral sides of the body, where they aid in body flexion, including directional changes during ciliary swimming, body torsion, and escape responses. Helicoidal muscles, present as myocytes in left- and right-hand orientations, lie external of the circular bands and some of the longitudinal bands, and are hypothesized to counteract dilations of the pharynx and intestine during feeding. Extraordinary muscle orientations with undetermined functions include a pair of crossover muscles and a single semicircular muscle band at the caudal end. Accepted: 12 February 2001  相似文献   

17.
The muscular system of the marine interstitial gastrotrich Draculiciteria tessalata (Chaetonotida, Paucitubulatina) was analyzed with fluorescent phalloidin. Muscles in circular, longitudinal, helicoidal and dorsoventral orientations were found. Circular muscles were present as discreet rings on the pharynx only. Five pairs of longitudinal muscles were found in dorsal, lateral and ventral positions. One of the two pairs of lateral muscles is newly described for the species. Helicoidal muscles, external to the circular muscles and some longitudinal bands, spiraled around the pharynx and anterior portion of the intestine. Two pairs of segmentally-arranged dorsoventral muscles were also present. Lateral dorsoventral muscles extended from the base of the pharynx to the anterior part of the caudal furca. Medial dorsoventral muscles extended from the pharyngeal-intestinal junction into each ramus of the caudal furca. A hypothesis on the evolution of dorsoventral muscles in D. tessalata is proposed which includes a splitting of circular muscles into separate somatic and splanchnic components with a further displacement of both muscle sets into a dorsoventral orientation.  相似文献   

18.
Myogenesis is currently investigated in a number of invertebrate taxa using combined techniques, including fluorescence labeling, confocal microscopy, and 3D imaging, in order to understand anatomical and functional issues and to contribute to evolutionary questions. Although developmental studies on the gross morphology of bivalves have been extensively pursued, organogenesis including muscle development has been scarcely investigated so far. The present study describes in detail myogenesis in the scallop Nodipecten nodosus (Linnaeus, 1758) during larval and postmetamorphic stages by means of light, electron, and confocal microscopy. The veliger muscle system consists of an anterior adductor muscle, as well as four branched pairs of striated velum retractors and two pairs of striated ventral larval retractors. The pediveliger stage exhibits a considerably elaborated musculature comprising the velum retractors, the future adult foot retractor, mantle (pallial) muscles, and the anterior and posterior adductors, both composed of smooth and striated portions. During metamorphosis, all larval retractors together with the anterior adductor degenerate, resulting in the adult monomyarian condition, whereby the posterior adductor retains both myofiber types. Three muscle groups, i.e., the posterior adductor, foot retractor, and pallial muscles, have their origin prior to metamorphosis and are subsequently remodeled. Our data suggest a dimyarian condition (i.e., the presence of an anterior and a posterior adductor in the adult) as the basal condition for pectinids. Comparative analysis of myogenesis across Bivalvia strongly argues for ontogenetic and evolutionary independence of larval retractors from the adult musculature, as well as a complex set of larval retractor muscles in the last common bivalve ancestor.  相似文献   

19.
20.
Abstract. The atrochid rotifer, Acyclus inquietus, is a sedentary predator that lives within the colonies of its prey, the rotifer Sinantherina socialis. After larvae infiltrate and become associated with the colony, they secrete a permanent gelatinous tube and undergo metamorphosis to the adult stage. We followed settlement and metamorphosis using bright-field microscopy to document specific larval behaviors after eclosion, and used epifluorescence and confocal microscopy of phalloidin-labeled specimens to visualize some of the morphological changes that occur during metamorphosis. Upon eclosion, larvae possess paired eyespots and a ciliated corona that functions strictly in locomotion. After leaving the parent's gelatinous tube, larvae eventually settle on unoccupied colonies of S. socialis or on other substrates if colonies are unavailable. Settlement involves a period of gliding among colony members before attachment with the foot and the secretion of a gelatinous tube. After settlement, there is a drastic reconfiguration of the corona that involves loss of the eyespots, loss of the coronal cilia, and the formation of the cup-shaped infundibulum, a deep depression in the anterior of the head that leads to the mouth. The development of the infundibulum involves the expansion of tissues around the mouth and is accompanied by a reorientation of the underlying musculature that supplies the infundibulum and allows its use in prey capture. The arrangement of the muscles in the trunk and foot regions, which contain outer circular (complete and incomplete) and inner longitudinal bands, remains unchanged between ontogenetic stages, and reflects the condition characteristic of other rotifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号