共查询到20条相似文献,搜索用时 0 毫秒
1.
Two K+
ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating
and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+
ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+
ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this
channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+
ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied. 相似文献
2.
Summary To study the physiological role of the bidirectionally operating, furosemide-sensitive Na+/K+ transport system of human erythrocytes, the effect of furosemide on red cell cation and hemoglobin content was determined in cells incubated for 24 hr with ouabain in 145mm NaCl media containing 0 to 10mm K+ or Rb+. In pure Na+ media, furosemide accelerated cell Na+ gain and retarded cellular K+ loss. External K+ (5mm) had an effect similar to furosemide and markedly reduced the action of the drug on cellular cation content. External Rb+ accelerated the Na+ gain like K+, but did not affect the K+ retention induced by furosemide. The data are interpreted to indicate that the furosemide-sensitive Na+/K+ transport system of human erythrocytes mediates an equimolar extrusion of Na+ and K+ in Na+ media (Na+/K+ cotransport), a 1:1 K+/K+ (K+/Rb+) and Na+/Na+ exchange progressively appearing upon increasing external K+ (Rb+) concentrations to 5mm. The effect of furosemide (or external K+/Rb+) on cation contents was associated with a prevention of the cell shrinkage seen in pure Na+ media, or with a cell swelling, indicating that the furosemide-sensitive Na+/K+ transport system is involved in the control of cell volume of human erythrocytes. The action of furosemide on cellular volume and cation content tended to disappear at 5mm external K+ or Rb+. Thein vivo red cell K+ content was negatively correlated to the rate of furosemide-sensitive K+ (Rb+) uptake, and a positive correlation was seen between mean cellular hemoglobin content and furosemide-sensitive transport activity. The transport system possibly functions as a K+ and waterextruding mechanism under physiological conditiosin vivo. The red cell Na+ content showed no correlation to the activity of the furosemide-sensitive transport system. 相似文献
3.
Allen Gibbs George N. Somero 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1990,160(4):431-439
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations
EDTA; DPH
1,6-diphenyl-1,3,5-hexatriene
-
PC
phosphatidylcholine
-
PL
phospholipid
-
SDH
succinate dehydrogenase 相似文献
4.
Horst Helbig Christoph Korbmacher Michael Wiederholt 《The Journal of membrane biology》1987,99(3):173-186
Summary Using intracellular microelectrode technique, we investigated the changes in membrane voltage (V) of cultured bovine pigmented ciliary epithelial cells induced by different extracellular solutions. (1)V in 213 cells under steady-state conditions averaged –46.1±0.6 mV (sem). (2) Increasing extracellular K+ concentration ([K+]
o
) depolarizedV. Addition of Ba2+ could diminish this response. (3) Depolarization on doubling [K+]
o
was increased at higher [K+]
o
(or low voltage). (4) Removing extracellular Ca2+ decreasedV and reduced theV amplitude on increasing [K+]
o
. (5)V was pH sensitive. Extra-and intracellular acidification depolarizedV; alkalinization induced a hyperpolarization.V responses to high [K+]
o
were reduced at acidic extracellular pH. (6) Removing K
o
+
depolarized, K
o
+
readdition after K+ depletion transiently hyperpolarizedV. These responses were insensitive to Ba2+ but were abolished in the presence of ouabain or in Na+-free medium. (7) Na+ readdition after Na+ depletion transiently hyperpolarizedV. This reaction was markedly reduced in the presence of ouabain or in K+-free solution but unchanged by Ba2+. It is concluded that in cultured bovine pigmented ciliary epithelial cells K+ conductance depends on Ca2+, pH and [K+]
o
(or voltage). An electrogenic Na+/K+-transport is present, which is stimulated during recovery from K+ or Na+ depletion. This transport is inhibited by ouabain and in K+-or Na+-free medium. 相似文献
5.
Guennoun-Lehmann S Fonseca JE Horisberger JD Rakowski RF 《The Journal of membrane biology》2007,216(2-3):107-116
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric
H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected
with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act
on Na,K-ATPase. 相似文献
6.
Changes in intracellular elemental (Na, K) concentrations caused by cytochalasin B were measured by electron probe microanalysis. Cytochalasin B is applied to transfer somatic cell nuclei into early embryo cells. This chemical causes a cytoskeleton rearrangement that may activate potassium channels, which, in turn, results in a cytoplasmic Na+/K+ imbalance. Our study showed that cytochalasin B reduced the intracellular sodium concentration. After the exposure of the mouse embryo with Dulbecco’s solution free from chemical, the Na+/K+ balance in cytoplasm reached the initial level. Possible mechanisms of registered changes in intracellular Na+ concentration are discussed. 相似文献
7.
Danijela Krstić Nenad Tomić Katarina Krinulović Vesna Vasić 《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):471-475
The in vitro influence of potassium ion modulations, in the concentration range 2 mM–500 mM, on digoxin-induced inhibition of porcine cerebral cortex Na+/K+-ATPase activity was studied. The response of enzymatic activity in the presence of various K+ concentrations to digoxin was biphasic, thereby, indicating the existence of two Na+/K+-ATPase isoforms, differing in the affinity towards the tested drug. Both isoforms showed higher sensitivity to digoxin in the presence of K+ ions below 20 mM in the medium assay. The IC50 values for high/low isoforms 2.77 × 10? 6 M / 8.56 × 10? 5 M and 7.06 × 10? 7 M /1.87 × 10? 5 M were obtained in the presence of optimal (20 mM) and 2 mM K+, respectively. However, preincubation in the presence of elevated K+ concentration (50 – 500 mM) in the medium assay prior to Na+/K+-ATPase exposure to digoxin did not prevent the inhibition, i.e. IC50 values for both isoforms was the same as in the presence of the optimal K+ concentration. On the contrary, addition of 200 mM K+ into the medium assay after 10 minutes exposure of Na+/K+-ATPase to digoxin, showed a time-dependent recovery effect on the inhibited enzymatic activity. Kinetic analysis showed that digoxin inhibited Na+/K+-ATPase by reducing maximum enzymatic velocity (Vmax) and Km, implying an uncompetitive mode of interaction. 相似文献
8.
Existing as a ubiquitous transmembrane protein, Na+K+-ATPase affects sperm fertility and capacitation through ion transport and a recently identified signaling function. Functional Na+K+-ATPase is a dimer of α and β subunits, each with isoforms (four and three, respectively). Since specific isoform pairings and locations may influence or indicate function, the objective of this study was to identify and localize subunits of Na+K+-ATPase in fresh bull sperm by immunoblotting and immunocytochemistry using antibodies against α1 and 3, and all β isoforms. Relative quantity of Na+K+-ATPase in head plasma membranes (HPM's) from sperm of different bulls was determined by densitometry of immunoblot bands, and compared to bovine kidney. Sperm and kidney specifically bound all antibodies at kDa equivalent to commercial controls, and to additional lower kDa bands in HPM. Immunofluorescence of intact sperm confirmed that all isoforms were present in the head region of sperm and that α3 was also uniformly distributed post-equatorially. Permeabilization exposing internal membranes typically resulted in an increase in fluorescence, indicating that some antibody binding sites were present on the inner surface of the HPM or the acrosomal membrane. Deglycosylation of β1 reduced the kDa of bands in sperm, rat brain and kidney, with the kDa of the deglycosylated bands differing among tissues. Two-dimensional blots of β1 revealed three distinct spots. Based on the unique quantity, location and structure Na+K+-ATPase subunits in sperm, we inferred that this protein has unique functions in sperm. 相似文献
9.
Hofbauerová K Kopecký V Ettrich R Kubala M Teisinger J Amler E 《Biochemical and biophysical research communications》2003,306(2):416-420
Site-directed mutagenesis was applied to modify phenylalanines (Phe(475)Trp, Phe(548)Tyr, and both) to generate mutants on the basis of molecular modeling of the ATP-binding domain of Na(+)/K(+)-ATPase, in order to characterize the forces that stabilize ATP in its binding pocket. Each of the mutants was examined by Raman difference spectroscopy, i.e., as a difference between the spectrum of the domain with and without bound ATP. It was shown that Phe(475) plays a key role in stabilizing ATP-binding by a stacking interaction. Phe(548) co-stabilizes ATP on the opposite site of the binding pocket and its type of interaction with ATP-binding differs from that of Phe(475). 相似文献
10.
Georgina Rodríguez de Lores Arnaiz 《Molecular neurobiology》1992,6(4):359-375
The arrival of the nerve impulse to the nerve endings leads to a series of events involving the entry of sodium and the exit
of potassium. Restoration of ionic equilibria of sodium and potassium through the membrane is carried out by the sodium/potassium
pump, that is the enzyme Na+,K+-ATPase. This is a particle-bound enzyme that concentrates in the nerve ending or synaptosomal membranes. The activity of
Na+,K+-ATPase is essential for the maintenance of numerous reactions, as demonstrated in the isolated synaptosomes. This lends interest
to the knowledge of the possible regulatory mechanisms of Na+,K+-ATPase activity in the synaptic region. The aim of this review is to summarize the results obtained in the author's laboratory,
that refer to the effect of neurotransmitters and endogenous substances on Na+,K+-ATPase activity. Mention is also made of results in the field obtained in other laboratories.
Evidence showing that brain Na+,K+-ATPase activity may be modified by certain neurotransmitters and insulin have been presented. The type of change produced
by noradrenaline, dopamine, and serotonin on synaptosomal membrane Na+,K+-ATPase was found to depend on the presence or absence of a soluble brain fraction. The soluble brain fraction itself was
able to stimulate or inhibit the enzyme, an effect that was dependent in turn on the time elapsed between preparation and
use of the fraction.
The filtration of soluble brain fraction through Sephadex G-50 allowed the separation of two active subfractions: peaks I
and II. Peak I increased Na+,K+- and Mg2+-ATPases, and peak II inhibited Na+,K+-ATPase. Other membrane enzymes such as acetylcholinesterase and 5′-nucleotidase were unchanged by peaks I or II.
In normotensive anesthetized rats, water and sodium excretion were not modified by peak I but were increased by peak II, thus
resembling ouabain effects.3H-ouabain binding was unchanged by peak I but decreased by peak II in some areas of the CNS assayed by quantitative autoradiography
and in synaptosomal membranes assayed by a filtration technique. The effects of peak I and II on Na+,K+-ATPase were reversed by catecholamines. The extent of Na+,K+-ATPase inhibition by peak II was dependent on K+ concentration, thus suggesting an interference with the K+ site of the enzyme. Peak II was able to induce the release of neurotransmitter stored in the synaptic vesicles in a way similar
to ouabain. Taking into account that peak II inhibits only Na+,K+-ATPase, increases diuresis and natriuresis, blocks high affinity3H-ouabain binding, and induces neurotransmitter release, it is suggested that it contains an ouabain-like substance. 相似文献
11.
Diabetes-induced hyperlipidemia, oxidative stress and protein glycation impair cellular calcium and sodium homeostasis associated with abnormal membrane-bound enzyme activities resulting in cardiac dysfunction in diabetes. To explore the cardioprotective mechanism of green tea in diabetes, we measured the changes in the levels of calcium, sodium, potassium and the activities of Na+/K+ -ATPase and Ca2+ -ATPase in green tea treated diabetic rat hearts. The effect of green tea on triglycerides, lipid peroxidation and protein glycation in diabetic heart were also measured to elucidate the underlying mechanisms. Diabetes was induced by streptozotocin (STZ, 60 mg/kg i.p.). Six weeks after the induction of diabetes, some of the diabetic rats were treated orally with green tea extract (GTE) (300 mg/kg/day) for 4 weeks. GTE produced reduction in blood glucose and lowered the levels of lipid peroxides, triglycerides and extent of protein glycation in the heart of diabetic rats. GTE blunted the rise in cardiac [Ca2+] and [Na+] whereas increased the activities of Ca2+ -ATPase and Na+/K+ -ATPase in diabetic rats. In conclusion, the data provide support to the therapeutic effect of GTE and suggest that a possible mechanism of action may be associated with the attenuation of the rise in [Ca2+] and [Na+] by ameliorating Ca2+ -ATPase and Na+/K+ -ATPase activities. 相似文献
12.
Marina Cherniavsky-Lev Ofra Golani Steven J. D. Karlish Haim Garty 《The Journal of biological chemistry》2014,289(2):1049-1059
Internalization of the Na+/K+-ATPase (the Na+ pump) has been studied in the human lung carcinoma cell line H1299 that expresses YFP-tagged α1 from its normal genomic localization. Both real-time imaging and surface biotinylation have demonstrated internalization of α1 induced by ≥100 nm ouabain which occurs in a time scale of hours. Unlike previous studies in other systems, the ouabain-induced internalization was insensitive to Src or PI3K inhibitors. Accumulation of α1 in the cells could be augmented by inhibition of lysosomal degradation but not by proteosomal inhibitors. In agreement, the internalized α1 could be colocalized with the lysosomal marker LAMP1 but not with Golgi or nuclear markers. In principle, internalization could be triggered by a conformational change of the ouabain-bound Na+/K+-ATPase molecule or more generally by the disruption of cation homeostasis (Na+, K+, Ca2+) due to the partial inhibition of active Na+ and K+ transport. Overexpression of ouabain-insensitive rat α1 failed to inhibit internalization of human α1 expressed in the same cells. In addition, incubating cells in a K+-free medium did not induce internalization of the pump or affect the response to ouabain. Thus, internalization is not the result of changes in the cellular cation balance but is likely to be triggered by a conformational change of the protein itself. In physiological conditions, internalization may serve to eliminate pumps that have been blocked by endogenous ouabain or other cardiac glycosides. This mechanism may be required due to the very slow dissociation of the ouabain·Na+/K+-ATPase complex. 相似文献
13.
Marianne Voldstedlund Jørgen Tranum-Jensen Jørgen Vinten 《The Journal of membrane biology》1993,136(1):63-73
We have quantitated and studied the topology of isoforms of the Na+/K+-ATPase and of the glucose transporter in rat adipocyte plasma membranes.Adipocytes were incubated with or without insulin for 15 min. Sheets of native plasma membrane, with the cytoplasmic face exposed, were prepared by adsorption to EM grids. Grids were incubated in parallel with monoclonal antibodies against the Na+/ K+-ATPase isoforms 1 and 2, and the glucose transporter isoforms GLUT1 and GLUT4, followed by immunogold labeling, negative staining and quantitation by counting of the gold particles in electron micrographs. In addition, the distribution of glucose transporters and Na+/K+-ATPase isoforms in subcellular membrane fractions prepared by an established fractionation procedure was monitored by Western blotting.We found that the Na+/K+-ATPases and the glucose transporters were confined to the planar part of the plasma membrane, without association to caveolar invaginations.The vast majority of the Na+/K+-ATPase molecules in the adipocyte plasma membrane were of the 2 isoform; GLUT4 was the dominating glucose transporter isoform.The total number of Na+/K+-ATPase molecules labeled in the plasma membrane was 3.5×105 per cell, independent of insulin stimulation. Concomitantly, insulin increased GLUT4 labeling sevenfold to a value of 3.5×105 per cell.The authors wish to thank Ulla Blankensteiner, Jonna Harpøth and Lisette Hansen for their skillful technical assistance and Birgit Risto for excellent work with the photographic prints. The 1 and 2 antibodies were kindly donated by K.W. Sweadner, Boston, and the F18 and F27 antibodies were granted by Peer N. Jørgensen, Novo-Nordisk, Bagsværd, Denmark. This work was supported by The NOVO Foundation, The Nordisk Insulin Foundation, The Danish Diabetes Foundation, The P. Carl Petersen Foundation and the Foundation of 17-12-81. 相似文献
14.
Previous studies in chick embryo cardiac myocytes have shown that the inhibition of Na+/K+-ATPase with ouabain induces cell shrinkage in an isosmotic environment (290 mOsm). The same inhibition produces an enhanced RVD (regulatory volume decrease) in hyposmotic conditions (100 mOsm). It is also known that submitting chick embryo cardiomyocytes to a hyperosmotic solution induces shrinkage and a concurrent intracellular alkalization. The objective of this study was to evaluate the involvement of intracellular pH (pHi), intracellular Ca2+ ([Ca2+]i) and Na+/K+-ATPase inhibition during hyposmotic swelling. Changes in intracellular pH and Ca2+ were monitored using BCECF and fura-2, respectively. The addition of ouabain (100 M) under both isosmotic and hyposmotic stimuli resulted in a large increase in [Ca2+]i (200%). A decrease in pHi (from 7.3 ± 0.09 to 6.4 ± 0.08, n = 6; p < 0.05) was only observed when ouabain was applied during hyposmotic swelling. This acidification was prevented by the removal of extracellular Ca2+. Inhibition of Na+/H2+ exchange with amiloride (1 mM) had no effect on the ouabain-induced acidification. Preventing the mitochondrial accumulation of Ca2+ using CCCP (10 M) resulted in a blockade of the progressive acidification normally induced by ouabain. The inhibition of mitochondrial membrane K+/H+ exchange with DCCD (1 mM) also completely prevented the acidification. Our results suggest that intracellular acidification upon cell swelling is mediated by an initial Ca2+ influx via Na+/Ca2+ exchange, which under hyposmotic conditions activates the K+ and Ca2+ mitochondrial exchange systems (K+/H+ and Ca2+/H+).Deceased 相似文献
15.
Danijela Krstić Katarina Krinulović Vesna Vasić 《Journal of enzyme inhibition and medicinal chemistry》2013,28(5):469-476
Kinetics and inhibition of Na+/K+-ATPase and Mg2+-ATPase activity from rat synaptic plasma membrane (SPM), by separate and simultaneous exposure to transition (Cu2+, Zn2+, Fe2+ and.Co2+) and heavy metals (Hg2+and Pb2+) ions were studied. All investigated metals produced a larger maximum inhibition of Na+/K+-ATPase than Mg2+-ATPase activity. The free concentrations of the key species (inhibitor, MgATP2 ? , MeATP2 ? ) in the medium assay were calculated and discussed. Simultaneous exposure to the combinations Cu2+/Fe2+ or Hg2+/Pb2+caused additive inhibition, while Cu2+/Zn2+ or Fe2+/Zn2+ inhibited Na+/K+-ATPase activity synergistically (i.e., greater than the sum metal-induced inhibition assayed separately). Simultaneous exposure to Cu2+/Fe2+ or Cu2+/Zn2+ inhibited Mg2+-ATPase activity synergistically, while Hg2+/Pb2+ or Fe2+/Zn2+ induced antagonistic inhibition of this enzyme. Kinetic analysis showed that all investigated metals inhibited Na+/K+-ATPase activity by reducing the maximum velocities (Vmax) rather than the apparent affinity (Km) for substrate MgATP2-, implying the noncompetitive nature of the inhibition. The incomplete inhibition of Mg2+-ATPase activity by Zn2+, Fe2+ and Co2+ as well as kinetic analysis indicated two distinct Mg2+-ATPase subtypes activated in the presence of low and high MgATP2 ? concentration. EDTA, L-cysteine and gluthathione (GSH) prevented metal ion-induced inhibition of Na+/K+-ATPase with various potencies. Furthermore, these ligands also reversed Na+/K+-ATPase activity inhibited by transition metals in a concentration-dependent manner, but a recovery effect by any ligand on Hg2+-induced inhibition was not obtained. 相似文献
16.
Jaroslava Šeflová Petra Čechová Tereza Štenclová Marek Šebela 《Journal of enzyme inhibition and medicinal chemistry》2018,33(1):701-706
Cisplatin is the most widely used chemotherapeutic drug for the treatment of various types of cancer; however, its administration brings also numerous side effects. It was demonstrated that cisplatin can inhibit the Na+/K+-ATPase (NKA), which can explain a large part of the adverse effects. In this study, we have identified five cysteinyl residues (C452, C456, C457, C577, and C656) as the cisplatin binding sites on the cytoplasmic loop connecting transmembrane helices 4 and 5 (C45), using site-directed mutagenesis and mass spectrometry experiments. The identified residues are known to be susceptible to glutathionylation indicating their involvement in a common regulatory mechanism. 相似文献
17.
Xiawei Wei Bin Shao Zhiyao He Tinghong Ye Min Luo Yaxiong Sang Xiao Liang Wei Wang Shuntao Luo Shengyong Yang Shuang Zhang Changyang Gong Maling Gou Hongxing Deng Yinglan Zhao Hanshuo Yang Senyi Deng Chengjian Zhao Li Yang Zhiyong Qian Jiong Li Xun Sun Jiahuai Han Chengyu Jiang Min Wu Zhirong Zhang 《Cell research》2015,25(2):237-253
Nanocarriers with positive surface charges are known for their toxicity which has limited their clinical applications. The mechanism underlying their toxicity, such as the induction of inflammatory response, remains largely unknown. In the present study we found that injection of cationic nanocarriers, including cationic liposomes, PEI, and chitosan, led to the rapid appearance of necrotic cells. Cell necrosis induced by cationic nanocarriers is dependent on their positive surface charges, but does not require RIP1 and Mlkl. Instead, intracellular Na+ overload was found to accompany the cell death. Depletion of Na+ in culture medium or pretreatment of cells with the Na+/K+-ATPase cation-binding site inhibitor ouabain, protected cells from cell necrosis. Moreover, treatment with cationic nanocarriers inhibited Na+/K+-ATPase activity both in vitro and in vivo. The computational simulation showed that cationic carriers could interact with cation-binding site of Na+/K+-ATPase. Mice pretreated with a small dose of ouabain showed improved survival after injection of a lethal dose of cationic nanocarriers. Further analyses suggest that cell necrosis induced by cationic nanocarriers and the resulting leakage of mitochondrial DNA could trigger severe inflammation in vivo, which is mediated by a pathway involving TLR9 and MyD88 signaling. Taken together, our results reveal a novel mechanism whereby cationic nanocarriers induce acute cell necrosis through the interaction with Na+/K+-ATPase, with the subsequent exposure of mitochondrial damage-associated molecular patterns as a key event that mediates the inflammatory responses. Our study has important implications for evaluating the biocompatibility of nanocarriers and designing better and safer ones for drug delivery. 相似文献
18.
Eguchi H Takeda K Schwarz W Shirahata A Kawamura M 《Biochemical and biophysical research communications》2005,330(2):611-614
The effect of point mutation in the sequence 316TWLE319, which occurs in the extracellular loop flanking the third (M3) and the fourth (M4) transmembrane segment (L3/4) of the Na+,K+-ATPase alpha-subunit, was examined. Mutation of Glu319 to Asp yielded an enzyme with full activity, whereas substituting Glu319 to Ala resulted in a severe loss of activity. A negative charge was introduced along the sequence, one residue at a time, from Thr316 to Leu318 (by E-scanning) in the mutant construct with Glu319 already mutated to Gln. The activity that had been reduced to 60% by the mutation of Glu319 to Gln was restored upon the introduction of a negative charge by E-scanning. When Leu318 was replaced by Glu in a series of scanning experiments, the K+ sensitivity of the ATPase activity was lowered. The lowering of K+ sensitivity was further demonstrated when a mutation of Leu318 to Glu was introduced into the wild-type enzyme. Furthermore, mutants with Leu318 to Gln, Arg, and Phe displayed lower K+ sensitivity similar to that of Leu318 to Glu mutant. Leu318 may be in access path for K+, and any substitution at this position may interfere with access of K+ from outside the cell. 相似文献