首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, a new type of bioreactor for air pollution control referred to as the foamed emulsion bioreactor (FEBR) has been developed. The process relies on the emulsion of an organic phase with a suspension of an actively growing culture of pollutant-degrading microorganisms, made into a foam with the air undergoing treatment. In the current paper, a diffusion and reaction model of the FEBR is presented and discussed. The model considers the fate of the volatile pollutant in the emulsion that constitutes the liquid films of the FEBR. Oxygen limitation as well as substrate inhibition were included in the biokinetic relationships. The removal of toluene vapors served for the validation of the model. All the model parameters were determined by independent experiments or taken from the literature. The model predictions were found to be in good agreement with the experimental data and the model provided useful insights on the phenomena occurring in the FEBR. Model parametric sensitivity studies and further discussion of the factors that limit the performance of the FEBR are presented in Part 2 of this paper.  相似文献   

2.
A new type of bioreactor for air pollution control has been developed. The new process relies on an organic-phase emulsion and actively growing pollutant-degrading microorganisms, made into a foam with the air being treated. This new reactor is referred to as a foamed emulsion bioreactor (FEBR). As there is no packing in the reactor, the FEBR is not subject to clogging. Mathematical modeling of the process and proof of concept using a laboratory prototype revealed that the foamed emulsion bioreactor greatly surpasses the performance of existing gas-phase bioreactors. Experimental results showed a toluene elimination capacity as high as 285 g(toluene) m(-3) (reactor) h(-1) with a removal efficiency of 95% at a gas residence time of 15 s and a toluene inlet concentration of 1-1.3 g x m(-3). Oxygen limited the reactor performance at toluene concentration above about 0.7-1.0 g x m(-3); consequently, performance was significantly improved when pure oxygen was added to the contaminated air. The elimination capacity increased from 204 to 408 g x m(-3) h(-1) with >77% toluene removal at toluene inlet concentrations of 2-2.2 g x m(-3). Overall, the results show that the performance of the FEBR far exceeds that of currently used bioreactors for air pollution control.  相似文献   

3.
Continuous operation of a new bioreactor for air pollution control called the foamed emulsion bioreactor (FEBR) has been investigated. The effect of several liquid feeding strategies was explored. The FEBR exhibited high and steady toluene removal performance (removal efficiency of 89%-94%, elimination capacity of 214-226 g/m3h at toluene inlet concentration of 1 g/m3) for up to 360 h, when 20% of the culture was replaced every 24 h by a nutrient solution containing 4 g/L of potassium nitrate as a nitrogen source. This feeding mode supported a high cell activity measured as INT reduction potential and active cell growth without being subject to nitrogen limitation. In comparison, operating the FEBR with the liquid in a closed loop (i.e., batch) resulted in a significant decrease of both the removal efficiency of toluene and INT reduction activity. Operation with feeding active cells resulted in stable and effective treatment, but would require a significant effort for mass culture preparation. Therefore, the continuous process with periodically feeding nutrients was found to be the most practical and effective operating mode. It also allows for stable operation, as was shown during removal of low concentration of toluene or after pollutant starvation. Throughout the study, INT reduction measurements provided insight into the process. INT reduction activity data proved that under normal operating conditions, the FEBR performance was limited by both the kinetics and by mass transfer. Overall, the results illustrate that engineered gas-phase bioreactors can potentially be more effective than conventional biofilters and biotrickling filters for the treatment of air pollutants such as toluene.  相似文献   

4.
A novel bioreactor for the biodegradation of toxic aromatic solvents, such as benzene, toluene, and xylenes in liquid effluent stream, was developed. Silicon tubing was immersed in the completely mixed and aerated bioreactor, and liquid toluene as a model solvent was circulated within the tubing. Toluene diffused out of the tube wall and was transferred at high rate into the culture broth, where biodegradation occurred. The effect of operating parameters on the toluene transfer rate was investigated. During continuous operation, the biodegradation rate was considerably higher than those obtained using conventional methods. A mathematical model was established for continuous biodegradation, and simulation results coincided with the experimental results. The performance and operational criteria of the bioreactor were analyzed on the basis of both the experimental and simulation results. (c) 1992 John Wiley & Sons, Inc.  相似文献   

5.
Stricter regulations on volatile organic compounds and hazardous air pollutants have increased the demand for abatement technologies. Biofiltration, a process in which contaminated air is passed through a biologically active bed, can be used to remove these pollutants from air streams. In this study, a fungal vapor-phase bioreactor containing a strain of the dimorphic black yeast, Exophiala lecanii-corni, was used to treat a gas stream contaminated with toluene. The maximum toluene elimination capacity in short-term tests was 270 g m(-3) h(-1), which is 2 to 7 times greater than the toluene elimination capacities typically reported for bacterial systems. The fungal bioreactor also maintained toluene removal efficiencies of greater than 95% throughout the 175-day study. Harsh operating conditions such as low moisture content, acidic biofilms, and nitrogen limitation did not adversely affect performance. The fungal bioreactor also rapidly reestablished high toluene removal efficiencies after an 8-day shutdown period. These results indicate that fungal bioreactors may be an effective alternative to conventional abatement technologies for treating high concentrations of pollutants in waste gas streams.  相似文献   

6.
Toluene degradation kinetics by biofilm and planktonic cells of Pseudomonas putida 54G were compared in this study. Batch degradation of (14)C toluene was used to evaluate kinetic parameters for planktonic cells. The kinetic parameters determined for toluene degradation were: specific growth rate, mu(max) = 10.08 +/- 1.2/day; half-saturation constant, K(S) = 3.98 +/- 1.28 mg/L; substrate inhibition constant, K(I) = 42.78 +/- 3.87 mg/L. Biofilm cells, grown on ceramic rings in vapor phase bioreactors, were removed and suspended in batch cultures to calculate (14)C toluene degradation rates. Specific activities measured for planktonic and biofilm cells were similar based on toluene degrading cells and total biomass. Long-term toluene exposure reduced specific activities that were based on total biomass for both biofilm and planktonic cells. These results suggest that long-term toluene exposure caused a large portion of the biomass to become inactive, even though the biofilm was not substrate limited. Conversely, specific activities based on numbers of toluene-culturable cells were comparable for both biofilm and planktonically grown cultures. Planktonic cell kinetics are often used in bioreactor models to model substrate degradation and growth of bacteria in biofilms, a procedure we found to be appropriate for this organism. For superior bioreactor design, however, changes in cellular activity that occur during biofilm development should be investigated under conditions relevant to reactor operation before predictive models for bioreactor systems are developed. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 535-546, 1997.  相似文献   

7.
Membrane process for biological treatment of contaminated gas streams   总被引:5,自引:0,他引:5  
A hollow fiber membrane bioreactor was investigated for control of air emissions of biodegradable volatile organic compounds (VOCs). In the membrane bioreactor, gases containing VOCs pass through the lumen of microporous hydrophobic hollow fiber membranes. Soluble compounds diffuse through the membrane pores and partition into a VOC degrading biofilm. The hollow fiber membranes serve as a support for the microbial population and provide a large surface area for VOC and oxygen mass transfer. Experiments were performed to investigate the effects of toluene loading rate, gas residence time, and liquid phase turbulence on toluene removal in a laboratory-scale membrane bioreactor. Initial acclimation of the microbial culture to toluene occurred over a period of nine days, after which a 70% removal efficiency was achieved at an inlet toluene concentration of 200 ppm and a gas residence time of 1.8 s (elimination capacity of 20 g m-3 min-1). At higher toluene loading rates, a maximum elimination capacity of 42 g m-3 min-1 was observed. In the absence of a biofilm (abiotic operation), mass transfer rates were found to increase with increasing liquid recirculation rates. Abiotic mass transfer coefficients could be estimated using a correlation of dimensionless parameters developed for heat transfer. Liquid phase recirculation rate had no effect on toluene removal when the biofilm was present, however. Three models of the reactor were created: a numeric model, a first-order flat sheet model, and a zero-order flat sheet model. Only the numeric model fit the data well, although removal predicted as a function of gas residence time disagreed slightly with that observed. A modification in the model to account for membrane phase resistance resulted in an underprediction of removal. Sensitivity analysis of the numeric model indicated that removal was a strong function of the liquid phase biomass density and biofilm diffusion coefficient, with diffusion rates below 10(-9) m2 s-1 resulting in decreased removal rates.  相似文献   

8.
The design of a large-scale bioreactor for the production of bacterial biomass adapted to the biodegradation of volatile organic compounds was carried out. The bioreactor model used integrated the microbial kinetics and fluid dynamics described by the compartment model approach. The process conditions and kinetic parameters were adopted from the laboratory experimental study of (León, E., Seignez, C., Adler, N., Péringer, P., 1999. Growth inhibition of biomass adapted to the degradation of toluene and xylenes in mixture in a batch reactor with substrates supplied by pulses. Biodegradation 10, 245-250). The performance of the pulsed-batch stirred bioreactor under surface aeration conditions was simulated for different mixing configurations and conditions such as the impeller diameter, number of impellers, stirring speed, and oxygen pressure. The simulations were used for the cost analysis which resulted in the optimal design of the bioreactor.  相似文献   

9.
A potential method to improve biomass distribution and the stability of vapor-phase bioreactors is to operate them in a directionally switching mode such that the contaminant air stream direction is periodically reversed through the reactor. In this study, the effect of switching frequency (SF) on bioreactor performance and biodegradation activity was investigated at 1-, 3- and 7-day SFs using toluene as a model compound. Rapid losses of biodegradation capacity and serious bioreactor instability were observed in the bioreactor operated at a 1-day SF. It is hypothesized that the frequent dynamic loading conditions at the 1-day SF hindered biofilm development and ultimately bioreactor stability. In contrast, bioreactors operated at the 3- and 7-day SFs achieved overall removal efficiencies of greater than 99% for 72 and 59 days of operation, respectively. Following each air-stream reversal, the bioreactor operated at the 7-day SF required 48 h to fully restore biodegradation capacity in the inlet bioreactor section. The 1-day SF bioreactor required no such reacclimation period. The toluene-degrading activity in the inlet section of the 7-day SF bioreactor dropped by 71% during the 7-day cycle, whereas it decreased by only 11% in the inlet of the 3-day SF bioreactor. These declines suggest that continuous or near-continuous exposure to toluene can inhibit microbial activity. Of the three SFs examined, the 3-day SF yielded the most efficient bioreactor performance by balancing reacclimation requirements with biodegradation activity losses.  相似文献   

10.
A bioactive foam reactor (BFR), a novel bioreactor operated using surfactant foams and suspended microorganisms for the treatment of gaseous toluene, was investigated to characterize its performance with respect to the mass transfer and biodegradation rates. The BFR system consisted of two reactors in series; a foam column for toluene mass transfer using fine bubbles and a cell reservoir where suspended microorganisms actively biodegraded toluene. In this study, a series of short-term experiments demonstrated that the BFR could achieve stable removal performance and a high elimination capacity (EC) for toluene at 100.3 g/m3/h. A numerical model, combining mass balance equations for the mass transfer and subsequent biodegradation, resulted in reasonable agreement with the experimental findings. At an inlet toluene concentration of 100 ppmv, the toluene concentration in the liquid phase remained extremely low, indicating that the microbial activity was not hindered in the BFR system. However, the experimental and model prediction results showed that the actual mass of toluene transferred into the liquid phase was not closely balanced with the amount of toluene biodegraded in the BFR used in this study. Consequently, methods, such as increasing the effective volume of the foam column or the mass transfer coefficient, need to be implemented to achieve higher toluene EC and better BFR performance.  相似文献   

11.
Excess biomass accumulation and activity loss in vapor-phase bioreactors (VPBs) can lead to unreliable long-term operation. In this study, temporal and spatial variations in biomass accumulation, distribution and activity in VPBs treating toluene-contaminated air were monitored over a 96-day period. Two laboratory-scale bioreactors were subjected to a toluene loading rate of 45.8 g/m(3)-h with one VPB operating in a unidirectional (UD) mode and a second identical VPB operating in a directionally switching (DS) mode. In the UD bioreactor, the contaminated air stream was continuously fed to the bottom of the reactor, while, in the DS bioreactor, the direction of the contaminated gas flow was reversed every three days. Overall, the DS system performed better with respect to biomass distribution and microbial activity across the bioreactor, resulting in more stable bioreactor performance. In contrast, most of the biomass accumulation and activity was confined to the front half of the UD bioreactor column which caused high pressure drops, rapid activity loss and eventually toluene breakthrough. A carbon balance reveals that excess biomass accumulated continuously in both bioreactors, and biomass yield coefficients were very similar (0.59 g dry biomass/g toluene for the UD and 0.63 g dry biomass/g toluene for the DS). The viable biomass population remained relatively constant in both bioreactors over the operational period, while the inactive biomass fraction steadily increased over the same time frame. Biodegradation activity determined by the dehydrogenase enzyme activity assay was found to be a function of biomass accumulation and reflected pollutant removal profiles along the columns. In addition, biomass activity correlated well with the toluene-degrading fraction of the total bacterial population.  相似文献   

12.
《Journal of biotechnology》1999,67(2-3):99-112
A fibrous-bed bioreactor containing the coculture of Pseudomonas putida and P. fluorescens immobilized in a fibrous matrix was developed to degrade benzene (B), toluene (T), ethylbenzene (E), and o-xylene (X) in synthetic waste streams. The kinetics of BTEX biodegradation by immobilized cells adapted in the fibrous-bed bioreactor and free cells grown in serum bottles were studied. In general, the BTEX biodegradation rate increased with increasing substrate concentration and then decreased after reaching a maximum, showing substrate-inhibition kinetics. However, for immobilized cells, the degradation rate was much higher than that of free cells. Compared to free cells, immobilized cells in the bioreactor tolerated higher concentrations (>1000 mg l−1) of benzene and toluene, and gave at least 16-fold higher degradation rates for benzene, ethylbenzene, and o-xylene, and a 9-fold higher degradation rate for toluene. Complete and simultaneous degradation of BTEX mixture was achieved in the bioreactor under hypoxic conditions. Cells in the bioreactor were relatively insensitive to benzene toxicity; this insensitivity was attributed to adaptation of the cells in the bioreactor. Compared to the original seeding culture, the adapted cells from the fibrous-bed bioreactor had higher specific growth rate, benzene degradation rate, and cell yield when the benzene concentration was higher than 100 mg l−1. Cells in the fibrous bed had a long, slim morphology, which is different from the normal short-rod shape found for suspended cells in solution.  相似文献   

13.
As measured by the toluene-induced bioluminescent response of Pseudomonas putida TVA8 in batch experiments, toluene dioxygenase (Tod) enzyme activities are dependent on toluene concentration between 0 and 30 mg/L. To provide a measure of the Tod activity for use in Michaelis-Menten competitive-inhibition kinetics, a correlation between toluene concentration and induced Tod activity as measured by an induced bioluminescent response of P. putida TVA8 is presented as a nondimensional Tod activity parameter. A packed-bed, radial-flow bioreactor (RFB) using the bioreporter P. putida TVA8A serves as the model system for studying the effect of the enzyme activity parameter on model predictions of vapor-phase toluene oxidation and trichloroethylene (TCE) cometabolism. Mass balances were performed on a differential section of the RFB to describe the radial transport of vapor-phase toluene and TCE through a bulk gas phase and the concomitant biological reaction in a stationary biofilm phase. The finite-element Galerkin weak-statement formulation with first-order basis functions was used to find the optimum solution to the highly nonlinear, coupled equations. For this RFB system with toluene concentrations less than 1 mg/L in the bulk gas phase, the Tod activity parameter enables accurate predictions of steady-state TCE degradation rate (0.27 microg TCE/min).  相似文献   

14.
Co-metabolic degradation of trichloroethylene (TCE) by Pseudomonas putida F1 was investigated in a novel bioreactor with a fibrous bed. A pseudo-first-order rate constant for TCE degradation was 1.4 h–1 for 2.4 to 100 mg TCE l–1. Competitive inhibition of toluene on TCE removal could be prevented in this bioreactor. 90% TCE was removed over 4 h when 95 mg toluene l–1 was presented simultaneously.  相似文献   

15.
16.
The response of Pseudomonas putida F1 to process fluctuations and operational failures during toluene biodegradation was evaluated in a chemostat suspended growth bioreactor. The ability of P. putida F1 to rapidly increase its specific toluene degradation capacity resulted in no significant variation in process removal efficiency when toluene load was increased from 188 to 341 g m−3 h−1. Likewise, bacterial activity rapidly reached steady state performance (in less than 1.5 h after the restoration of steady state operational conditions) following an 8 h process shutdown, or after episodes of toluene or mineral nutrients deprivation. Process performance was however highly sensitive to pH, as pH levels below 4.5 dramatically inhibited bacterial activity, decreasing severely process robustness and inducing a cycle of periodic process collapses and recoveries. This pH mediated deterioration of bacterial activity was confirmed by further respirometric tests, which revealed a 50–60% reduction in the O2 consumption rate during the degradation of both toluene and 3-methyl catechol when pH decreased from 5.05 to 4.55. Finally, process robustness was quantified according to methods previously described in literature.  相似文献   

17.
A new methodology based on a metabolic control analysis (MCA) approach is developed for the optimization of continuous cascade bioreactor system. A general framework for representation of a cascade bioreactor system consisting of a large number of reactors as a single network is proposed. The kinetic and transport processes occurring in the system are represented as a reaction network with appropriate stoichiometry. Such representation of the bioreactor systems makes it amenable to the direct application of the MCA approach. The process sensitivity information is extracted using MCA methodology in the form of flux and concentration control coefficients. The process sensitivity information is shown to be a useful guide for determining the choice of decision variables for the purpose of optimization. A generalized problem of optimization of the bioreactor is formulated in which the decision variables are the operating conditions and kinetic parameters. The gradient of the objective function to be maximized with respect to all decision variables is obtained in the form of response coefficients. This gradient information can be used in any gradient-based optimization algorithm. The efficiency of the proposed technique is demonstrated with two examples taken from literature: biotransformation of crotonobetaine and alcohol fermentation in cascade bioreactor system.  相似文献   

18.
A two-phase partitioning bioreactor (TPPB), employing styrene-butadiene co-polymer beads as the sequestering/delivery phase, was used to treat high step change loadings of toluene in a contaminated air stream. The polymers, which are biocompatible and non-bioavailable, allowed the use of a microbial consortium and effectively absorbed and released the toluene vapours for biodegradation, while providing a buffering effect against high toluene transients. Toluene loadings were increased from a base steady state rate of 343-6,000 g/m(3) h for 1 h periods, with the polymer-aqueous system substantially outperforming a single phase system on the basis of improving the toluene removal efficiency and reducing the maximum toluene concentrations emitted during the transients.  相似文献   

19.
Integrated continuous manufacturing is entering the biopharmaceutical industry. The main drivers range from improved economics, manufacturing flexibility, and more consistent product quality. However, studies on fully integrated production platforms have been limited due to the higher degree of system complexity, limited process information, disturbance, and drift sensitivity, as well as difficulties in digital process integration. In this study, we present an automated end-to-end integrated process consisting of a perfusion bioreactor, CaptureSMB, virus inactivation (VI), and two polishing steps to produce an antibody from an instable cell line. A supervisory control and data acquisition (SCADA) system was developed, which digitally integrates unit operations and analyzers, collects and centrally stores all process data, and allows process-wide monitoring and control. The integrated system consisting of bioreactor and capture step was operated initially for 4 days, after which the full end-to-end integrated run with no interruption lasted for 10 days. In response to decreasing cell-specific productivity, the supervisory control adjusted the loading duration of the capture step to obtain high capacity utilization without yield loss and constant antibody quantity for subsequent operations. Moreover, the SCADA system coordinated VI neutralization and discharge to enable constant loading conditions on the polishing unit. Lastly, the polishing was sufficiently robust to cope with significantly increased aggregate levels induced on purpose during virus inactivation. It is demonstrated that despite significant process disturbances and drifts, a robust process design and the supervisory control enabled constant (optimum) process performance and consistent product quality.  相似文献   

20.
High‐throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high‐throughput mini‐bioreactor system viz. the Advanced Microscale Bioreactor (ambr15TM), to perform process characterization in less than a month and develop an input control strategy. As a pre‐requisite to process characterization, a scale‐down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale‐down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15TM system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1623–1632, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号