首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression.  相似文献   

2.

Background  

There is an increasing number of complete and incomplete virus genome sequences available in public databases. This large body of sequence data harbors information about epidemiology, phylogeny, and virulence. Several specialized databases, such as the NCBI Influenza Virus Resource or the Los Alamos HIV database, offer sophisticated query interfaces along with integrated exploratory data analysis tools for individual virus species to facilitate extracting this information. Thus far, there has not been a comprehensive database for dengue virus, a significant public health threat.  相似文献   

3.

Background  

Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary.  相似文献   

4.

Background  

Single nucleotide polymorphisms (SNPs) are important tools in studying complex genetic traits and genome evolution. Computational strategies for SNP discovery make use of the large number of sequences present in public databases (in most cases as expressed sequence tags (ESTs)) and are considered to be faster and more cost-effective than experimental procedures. A major challenge in computational SNP discovery is distinguishing allelic variation from sequence variation between paralogous sequences, in addition to recognizing sequencing errors. For the majority of the public EST sequences, trace or quality files are lacking which makes detection of reliable SNPs even more difficult because it has to rely on sequence comparisons only.  相似文献   

5.

Background  

In biological sequence analysis, position specific scoring matrices (PSSMs) are widely used to represent sequence motifs in nucleotide as well as amino acid sequences. Searching with PSSMs in complete genomes or large sequence databases is a common, but computationally expensive task.  相似文献   

6.

Background  

DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity.  相似文献   

7.

Background  

Repeat-rich regions such as centromeres receive less attention than their gene-rich euchromatic counterparts because the former are difficult to assemble and analyze. Our objectives were to 1) map all ten centromeres onto the maize genetic map and 2) characterize the sequence features of maize centromeres, each of which spans several megabases of highly repetitive DNA. Repetitive sequences can be mapped using special molecular markers that are based on PCR with primers designed from two unique "repeat junctions". Efficient screening of large amounts of maize genome sequence data for repeat junctions, as well as key centromere sequence features required the development of specific annotation software.  相似文献   

8.

Background  

The automated annotation of biological sequences (protein, DNA) relies on the computation of hits (predicted features) on the sequences using various algorithms. Public databases of biological sequences provide a wealth of biological "knowledge", for example manually validated annotations (features) that are located on the sequences, but mining the sequence annotations and especially the predicted and curated features requires dedicated tools. Due to the heterogeneity and diversity of the biological information, it is difficult to handle redundancy, frequent updates, taxonomic information and "private" data together with computational algorithms in a common workflow.  相似文献   

9.
10.

Background  

High-throughput sequencing makes it possible to rapidly obtain thousands of 16S rDNA sequences from environmental samples. Bioinformatic tools for the analyses of large 16S rDNA sequence databases are needed to comprehensively describe and compare these datasets.  相似文献   

11.

Background  

Genome databases contain diverse kinds of information, including gene annotations and nucleotide and amino acid sequences. It is not easy to integrate such information for genomic study. There are few tools for integrated analyses of genomic data, therefore, we developed software that enables users to handle, manipulate, and analyze genome data with a variety of sequence analysis programs.  相似文献   

12.

Background  

Viroids, satellite RNAs, satellites viruses and the human hepatitis delta virus form the 'brotherhood' of the smallest known infectious RNA agents, known as the subviral RNAs. For most of these species, it is generally accepted that characteristics such as cell movement, replication, host specificity and pathogenicity are encoded in their RNA sequences and their resulting RNA structures. Although many sequences are indexed in publicly available databases, these sequence annotation databases do not provide the advanced searches and data manipulation capability for identifying and characterizing subviral RNA motifs.  相似文献   

13.

Background  

Whole-genome sequence alignment is an essential process for extracting valuable information about the functions, evolution, and peculiarities of genomes under investigation. As available genomic sequence data accumulate rapidly, there is great demand for tools that can compare whole-genome sequences within practical amounts of time and space. However, most existing genomic alignment tools can treat sequences that are only a few Mb long at once, and no state-of-the-art alignment program can align large sequences such as mammalian genomes directly on a conventional standalone computer.  相似文献   

14.

Background  

The phylogenetic distribution of large-scale genome structure (i.e. mosaic compositional patchiness) has been explored mainly by analytical ultracentrifugation of bulk DNA. However, with the availability of large, good-quality chromosome sequences, and the recently developed computational methods to directly analyze patchiness on the genome sequence, an evolutionary comparative analysis can be carried out at the sequence level.  相似文献   

15.

Background  

Assignment of function to new molecular sequence data is an essential step in genomics projects. The usual process involves similarity searches of a given sequence against one or more databases, an arduous process for large datasets.  相似文献   

16.

Background  

Frameshift mutations in protein-coding DNA sequences produce a drastic change in the resulting protein sequence, which prevents classic protein alignment methods from revealing the proteins' common origin. Moreover, when a large number of substitutions are additionally involved in the divergence, the homology detection becomes difficult even at the DNA level.  相似文献   

17.

Background  

Improvements in DNA sequencing technology and methodology have led to the rapid expansion of databases comprising DNA sequence, gene and genome data. Lower operational costs and heightened interest resulting from initial intriguing novel discoveries from genomics are also contributing to the accumulation of these data sets. A major challenge is to analyze and to mine data from these databases, especially whole genomes. There is a need for computational tools that look globally at genomes for data mining.  相似文献   

18.
19.

Background  

Using computational database searches, we have demonstrated previously that no gene sequences could be found for at least 36% of enzyme activities that have been assigned an Enzyme Commission number. Here we present a follow-up literature-based survey involving a statistically significant sample of such "orphan" activities. The survey was intended to determine whether sequences for these enzyme activities are truly unknown, or whether these sequences are absent from the public sequence databases but can be found in the literature.  相似文献   

20.

Background  

During the last few years, DNA sequence analysis has become one of the primary means of taxonomic identification of species, particularly so for species that are minute or otherwise lack distinct, readily obtainable morphological characters. Although the number of sequences available for comparison in public databases such as GenBank increases exponentially, only a minuscule fraction of all organisms have been sequenced, leaving taxon sampling a momentous problem for sequence-based taxonomic identification. When querying GenBank with a set of unidentified sequences, a considerable proportion typically lack fully identified matches, forming an ever-mounting pile of sequences that the researcher will have to monitor manually in the hope that new, clarifying sequences have been submitted by other researchers. To alleviate these concerns, a project to automatically monitor select unidentified sequences in GenBank for taxonomic progress through repeated local BLAST searches was initiated. Mycorrhizal fungi – a field where species identification often is prohibitively complex – and the much usedITSlocus were chosen as test bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号