首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcellular changes which occurred in sorghum leaves during increasing water stress and subsequent rewatering are described. Stomata were closed, abscisic acid levels were elevated, and the amounts of starch in the bundle sheath chloroplasts were much reduced by - 14 bars leaf water potential. Swelling of the outer chloroplast membrane, and reorganization of the tonoplast to form small vesicles from the large central vacuole, occurred by a leaf water potential of - 37 bars. Complete structural disruption of the tonoplast, as previously described for maize was not found. On rewatering, large amounts of starch reappeared within three hours. These findings strengthen the hypothesis that maintenance of tonoplast integrity is an important factor in the ability of plants to withstand drought.  相似文献   

2.
Boyer JS 《Plant physiology》1971,47(6):816-820
Photosynthesis was studied in sunflower plants subjected to 1 to 2 days of desiccation and then permitted to recover. The leaf water potential to which leaves returned after rewatering was dependent on the severity of desiccation and the evaporative conditions. Under moderately evaporative conditions, leaf water potential returned to predesiccation levels after 3 to 5 hours when desiccation was slight. Leaf water potentials remained below predesiccation levels for several days after rewatering when leaf water potentials decreased to −13 to −19 bars during desiccation. Leaf water potential showed no sign of recovery when leaf water potentials decreased to −20 bars or below during desiccation. The lack of full recovery of leaf water potential was attributable to increased resistance to water transport in the roots and stem. The resistance ultimately became large enough to result in death of the leaves because net water loss continued even after the soil had been rewatered.  相似文献   

3.
Plant water deficits reduced the basipetal transport of auxin in cotyledonary petiole sections taken from cotton (Gossypium hirsutum L.) seedings. A pulse-labeling technique was employed to eliminate complications of uptake or exit of 14C-indoleacetic acid from the tissue. The transport capacity or the relative amount of radioactivity in a 30-minute pulse which was basipetally translocated was approximately 30% per hour in petioles excised from well watered seedlings (plant water potentials of approximately -4 to -8 bars). No cotyledonary leaf abscission took place in well watered seedlings. Plant water potentials from -8 to -12 bars reduced the transport capacity from 30 to 15% per hour, and although the leaves were wilted, cotyledonary abscission did not increase appreciably at these levels of stress. The threshold water potential sufficient to induce leaf abscission was approximately -13 bars and abscission increased with increasing stress while the auxin transport capacity of the petioles remained relatively constant (15% per hour). The basipetal transport capacity of well watered petioles tested under anaerobic conditions and acropetal transport tested under all conditions were typically less than basipetal transport under the most severe stress conditions. Cotyledonary abscission took place during and 24 hours after relief of stress with little or no abscission taking place 48 hours after relief of stress. Although the water potential returned to -4 bars within hours after rewatering the stressed plants, partial recovery of the basipetal transport capacity of the petioles was not apparent until 48 hours after rewatering, and at least 72 hours was required to return the transport capacity to near normal values. These data support the view that decreased levels of auxin reaching the abscission zone from the leaf blade influence the abscission process and further suggest that the length of time that the auxin supply is maximally reduced is more critical than the degree of reduction.  相似文献   

4.
Behavior of Corn and Sorghum under Water Stress and during Recovery   总被引:10,自引:9,他引:1       下载免费PDF全文
Corn (Zea mays L.) and sorghum (Sorghum vulgare, Pers.) plants were grown in a vermiculite-gravel mixture in controlled environment chambers until they were 40 days old. Water was withheld until they were severely wilted, and they were then rewatered. During drying and after rewatering stomatal resistance was measured with a diffusion porometer each morning, and water saturation deficit and water potential were measured on leaf samples. The average resistance of the lower epidermis of well watered plants was lower for corn than for sorghum. When water stress developed, the stomata began to close at a higher water potential in corn than in sorghum. The stomata of both species began to reopen normally soon after the wilted plants were rewatered, and on the 2nd day the leaf resistances were nearly as low as those of the controls. The average leaf water potential of well watered corn was −4.5 bars; that of sorghum, −6.4 bars. The lowest leaf water potential in stressed corn was −12.8 bars at a water saturation deficit of 45%. The lowest leaf water potential in stressed sorghum was −15.7 bars, but the water saturation deficit was only 29%. At these values the leaves of both species were tightly rolled or folded and some injury was apparent. Thus, although the average leaf resistance of corn is little lower than that of sorghum, corn loses much more of its water before the stomata are fully closed than does sorghum. The smaller reduction in water content of sorghum for a given reduction in leaf water potential is characteristic of drought-resistant species.  相似文献   

5.
Endogenous levels of abscisic acid-like inhibitors doubled within 15 minutes of leaf excision in Vitis vinifera under laboratory conditions. At that stage water potential Ψ had fallen to -15 bars and stomatal closure was occurring. After prolonged stress (6 days and final Ψ -13 bars) inhibitor levels in intact vine leaves increased by a factor of 44 but showed a rapid decline following rewatering. Photosynthetic activity was not immediately restored, and its gradual recovery was not directly related to inhibitor level.  相似文献   

6.
Plants of two varieties of soybean (Glycine max (L.) Merr.) and two varieties of sunflower (Helianthus annuus L.) were grown in controlled environments and subjected to water stress at various stages of growth. Leaf resistances and leaf water potentials were measured as stress developed. In soybeans the upper leaf surface had a higher resistance than the lower surface at all leaf water potentials and growth stages. Resistance of the upper surface began to increase at a higher water potential and increased more than the resistance of the lower surface. Resistances returned to prestress values 4 days after rewatering. In sunflowers upper and lower leaf surfaces had similar resistances at all water potentials and growth stages. Leaf resistances were higher in sunflower plants stressed before flowering than in those stressed later. Sunflower plants stressed to −16 bars recovered their prestress leaf resistance and water potential a few days after rewatering, but leaves of sunflower plants stressed to −23 bars died. Leaves of soybean and sunflower plants stressed before flowering suffered less injury than those of older plants and sunflowers stressed after flowering suffered more injury than soybeans.  相似文献   

7.
The localization of antioxidant enzymes between the mesophyll and bundle sheath cells were determined in sorghum (Sorghum vulgare L.) leaves. The activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR) were assayed in whole leaf, mesophyll and bundle sheath fractions of sorghum leaves subjected to water-limited conditions. Drought was imposed by withholding water and the plants were maintained at different water potentials ranging from 0.5–2.0 MPa. The purity of the isolates was tested using the marker enzymes like RuBPcase and PEPcase. GR was mostly localized in mesophyll fraction, while SOD, APX and peroxidase were located in bundle sheath cells. Catalase was found to be equally distributed between the two cell types. Under water stress conditions, most of the SOD activity was found in the bundle sheath tissues. Little or no activity of the enzymes CAT, APX or POD was found in the mesophyll extracts when exposed to water stress. GR activity increased when exposed to low water regimes. From this study, it is clear that antioxidants are differentially distributed between the mesophyll and bundle sheath cells in sorghum leaves. Under water stress conditions, the mesophyll cells showed less damage from oxidative stress when compared to the bundle sheath cells. This is critical for determining the sensitivity of sorghum to extreme climatic conditions.  相似文献   

8.
The effects on water status and growth of controlled cycles of water stress applied at various stages of development were studied on a semi-dwarf spring wheat (Triticum aestivum L.). The plants were grown in controlled environment chambers of the Duke University Phytetron at 24/18°C with a 12-h photo-period at about 600 μE m?2 s?1. Groups of plants were subjected to severe water stress by withholding irrigation, beginning at the 7th leaf, early anthesis, or early dough stages of development. A second cycle started 9 to 13 days after termination of the first cycle and maintained until the flag leaf water potential reached –25 bars at each of the growth stages. The lower leaves showed sign of wilting as indicated by curling in the first drying cycle at –7 bars and in the second cycle at –9 bars of leaf water potential during all stages of growth. Although these leaves recovered completely upon rewatering, onset of senescence was accelerated by three days in stressed plants. A preliminary drying cycle did not increase the ability of the plants to withstand subsequent stress because of severity of stress. Water stress of –25 bars at all three stages of growth reduced seed yield. The reduction was greater when a second stress cycle was also applied. Stress applied during early anthesis stage produced the smallest and the least number of seeds. The lack of osmotic adjustment probably was due to very rapid and severe development of water stress.  相似文献   

9.
The physiological basis underlying differences in sensitivity of different aged leaves to water stress was investigated in Fragaria virginiana Duchesne. Differential susceptibility of only older leaves to water stress in the field during summer months appeared related to gradients in leaf osmotic potential within the plant and by an age dependency in the ability of leaves to adjust osmotically when challenged by periodic water deficits. Under greenhouse conditions, older leaves senesced invariably during an imposed water stress while control leaves of comparable age and stressed younger leaves remained green. Osmotic potentials of intermediate aged and younger leaves became approximately 1 to 2 bars lower after a single cycle of imposed stress and up to 10 bars lower after two cycles of stress. Pronounced gradients in leaf osmotic potential within individual whole plants were observed following two cycles of water stress that were significantly different from control values. Osmotic adjustment was dependent on leaf age with the greatest capacity for adjustment in the intermediate aged leaves. Loss of osmotic adjustment was rapid upon rewatering with a half-life of 4 days. An irreversible component of adjustment was observed, amounting to about 10% (or 2 bars) of the maximally adjusted state. This irreversible component could be accounted for in part by significant changes in cell size and other anatomical alterations in the leaf that affect cellular osmotic volume, and, hence, cellular water relations.  相似文献   

10.
四种生态型芦苇叶中离子分布对生境的生理适应   总被引:9,自引:0,他引:9  
采用X射线微区分析技术 ,测定了 4种生态型芦苇 (Phragmitesaustralis (CaV .)Trin .exSteud .)叶的表皮泡状细胞、叶肉细胞和叶脉维管束鞘细胞离子的含量。结果表明 :沼泽芦苇的鞘细胞内 ,K 、Na 、Ca2 、Mg2 和Cl-分布均较叶肉细胞和泡状细胞高。沙丘芦苇的泡状细胞中Ca2 分布较叶肉细胞和鞘细胞高 ,而Mg2 在其叶肉细胞 ,以及K 、Na 和Cl- 在其鞘细胞内分布均较高。在轻度盐化草甸芦苇的叶肉细胞内分布较多的Na 和Mg2 ,而在鞘细胞内K 、Ca2 和Cl- 的分布均较叶肉细胞和泡状细胞为高。重度盐化草甸芦苇的泡状细胞内Na 和Mg2 的分布较多 ;同样 ,在叶肉细胞中K 、Ca2 和Cl- 的分布也较多。最后 ,讨论了上述各种离子在不同生态型芦苇叶内分布的状况 ,以及与其环境适应的生理意义。  相似文献   

11.
Mesophyll cells and bundle sheath strands were isolated from Cyperus rotundus L. leaf sections infiltrated with a mixture of cellulase and pectinase followed by a gentle mortar and pestle grind. The leaf suspension was filtered through a filter assembly and mesophyll cells and bundle sheath strands were collected on 20-μm and 80-μm nylon nets, respectively. For the isolation of leaf epidermal strips longer leaf cross sections were incubated with the enzymes and gently ground as above. Loosely attached epidermal strips were peeled off with forceps. The upper epidermis, which lacks stomata, could be clearly distinguished from the lower epidermis which contains stomata. Microscopic evidence for identification and assessment of purity is provided for each isolated tissue.Enzymes related to the C4-dicarboxylic acid cycle such as phosphoenolpyruvate carboxylase, malate dehydrogenase (NADP+), pyruvate, Pi dikinase were found to be localized, ≥98%, in mesophyll cells. Enzymes related to operating the reductive pentose phosphate cycle such as RuDP carboxylase, phosphoribulose kinase, and malic enzyme are distributed, ≥99%, in bundle sheath strands. Other photosynthetic enzymes such as aspartate aminotransferase, pyrophosphatase, adenylate kinase, and glyceraldehyde 3-P dehydrogenase (NADP+) are quite active in both mesophyll and bundle sheath tissues.Enzymes involved in photorespiration such as RuDP oxygenase, catalase, glycolate oxidase, hydroxypyruvate reductase (NAD+), and phosphoglycolate phosphatase are preferentially localized, ≥84%, in bundle sheath strands.Nitrate and nitrite reductase can be found only in mesophyll cells, while glutamate dehydrogenase is present, ≥96%, in bundle sheath strands.Starch- and sucrose-synthesizing enzymes are about equally distributed between the mesophyll and bundle sheath tissues, except that the less active phosphorylase was found mainly in bundle sheath strands. Fructose-1,6-diP aldolase, which is a key enzyme in photosynthesis and glycolysis leading to sucrose and starch synthesis, is localized, ≥90%, in bundle sheath strands. The glycolytic enzymes, phosphoglyceromutase and enolase, have the highest activity in mesophyll cells, while the mitochondrial enzyme, cytochrome c oxidase, is more active in bundle sheath strands.The distribution of total nutsedge leaf chlorophyll, protein, and PEP carboxylase activity, using the resolved leaf components, is presented. 14CO2 Fixation experiments with the intact nutsedge leaves and isolated mesophyll and bundle sheath tissues show that complete C4 photosynthesis is compartmentalized into mesophyll CO2 fixation via PEP carboxylase and bundle sheath CO2 fixation via RuDP carboxylase. These results were used to support the proposed pathway of carbon assimilation in C4-dicarboxylic acid photosynthesis and to discuss the individual metabolic characteristics of intact mesophyll cells, bundle sheath cells, and epidermal tissues.  相似文献   

12.
Photosynthetic rates, chlorophyll content, and activities of several photosynthetic enzymes were determined per cell, per unit DNA, and per unit leaf area in five ploidal levels of the C4 dicot Atriplex confertifolia. Volumes of bundle sheath and mesophyll protoplasts were measured in enzymatic digestions of leaf tissue. Photosynthetic rates per cell, contents of DNA per cell, and activities of the bundle sheath enzymes ribulose 1,5-bisphosphate carboxylase (RuBPC) and NAD-malic enzyme per cell were correlated with ploidal level at 99% or 95% confidence levels, and the results suggested a near proportional relationship between gene dosage and gene products. There was also a high correlation between volume of mesophyll and bundle sheath cells and the ploidal level. Contents of DNA per cell, activity of RuBPC per cell, and volumes of cells were correlated with photosynthetic rate per cell at the 95% confidence level. The mesophyll cells did not respond to changes in ploidy like the bundle sheath cells. In the mesophyll cells the chlorophyll content per cell was constant at different ploidal levels, there was less increase in cell volume than in bundle sheath cells with an increase in ploidy, and there was not a significant correlation (at 95% level) of phosphoenolpyruvate carboxylase activity or content and pyruvate,Pi dikinase activity with increase in ploidy. The number of photosynthetic cells per unit leaf area progressively decreased with increasing ploidy from diploid to hexaploid, but thereafter remained constant in octaploid and decaploid plants. Numbers of cells per leaf area were not correlated with cell volumes. The mean photosynthetic rates per unit leaf area were lowest in the diploid, similar in 4×, 6×, and 8×, and highest in the decaploid. The photosynthetic rate per leaf area was highly correlated with the DNA content per leaf area.  相似文献   

13.
旱后复水对不同倍性小麦光合及抗氧化特性的影响   总被引:5,自引:1,他引:4  
利用盆栽控水试验方法,在干旱和复水条件下,于拔节期对不同倍性小麦叶片的光合参数以及抗氧化指标进行测定.结果表明:(1)与干旱处理相比,拔节期恢复供水可使受旱小麦叶片的光合参数增大,叶水势、超氧化物歧化酶(SOD)活性、细胞膜透性以及质膜过氧化程度都有所降低,其中净光合速率(Pn)和蒸腾速率(Tr)的增加超过对照,叶水势和细胞膜透性的降低也超过对照,产生了生理补偿效应;(2)旱后复水条件下,叶水势很快恢复到正常水平,Pn显著提高且高于正常对照水平,其中野生一粒和小偃6号,在干旱条件下,SOD酶活性高,具有较强的活性氧清除能力,复水后,MDA的积累减少,膜透性迅速恢复,抗氧化系统更好地保护和修复了光合机制,表现出较强的光合优势.  相似文献   

14.
Kanai R  Edwards GE 《Plant physiology》1973,51(6):1133-1137
Mesophyll protoplasts and bundle sheath strands of maize (Zea mays L.) leaves have been isolated by enzymatic digestion with cellulase. Mesophyll protoplasts, enzymatically released from maize leaf segments, were further purified by use of a polyethylene glycol-dextran liquid-liquid two phase system. Bundle sheath strands released from the leaf segments were isolated using filtration techniques. Light and electron microscopy show separation of the mesophyll cell protoplasts from bundle sheath strands. Two varieties of maize isolated mesophyll protoplasts had chlorophyll a/b ratios of 3.1 and 3.3, whereas isolated bundle sheath strands had chlorophyll a/b ratios of 6.2 and 6.6. Based on the chlorophyll a/b ratios in mesophyll protoplasts, bundle sheath cells, and whole leaf extracts, approximately 60% of the chlorophyll in the maize leaves would be in mesophyll cells and 40% in bundle sheath cells. The purity of the preparations was also evident from the exclusive localization of phosphopyruvate carboxylase (EC 4.1.1.31) and NADP-dependent malate dehydrogenase (EC 1.1.1) in mesophyll cells and ribulose 1,5-diphosphate carboxylase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), and “malic enzyme” (EC 1.1.1.40) in bundle sheath cells. NADP-glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) was found in both mesophyll and bundle sheath cells, while ribose 5-phosphate isomerase (EC 5.3.1.6) was primarily found in bundle sheath cells. In comparison to the enzyme activities in the whole leaf extract, there was about 90% recovery of the mesophyll enzymes and 65% recovery of the bundle sheath enzymes in the cellular preparations.  相似文献   

15.
石斛属植物多附着在其他植物体或岩石上,水分获取困难,其特殊的水分利用策略是其生存和发展的重要保证.为弄清石斛属植物对干旱胁迫的适应能力和机制,该文选用3年生金钗石斛和铁皮石斛,通过盆栽控水进行干旱胁迫和复水处理,探讨在不同干旱历时和干旱后复水条件下两种石斛的叶水势变化情况.结果表明:随着干旱时间的延长,两种石斛叶水势均...  相似文献   

16.
The photo-oxidation of cytochrome f (cytochrome c554) in bundle sheath cells isolated from leaves of maize (Zea mays var. DS 606A) has been compared with that in intact maize leaf and in isolated pea leaf cells (Pisum sativum L.). In all cases, illumination with red light caused a negative absorbance change at 554 nm which was attributed to the oxidation of cytochrome f. The extent of this change was greater using monochromatic red light at wavelengths above 700 nm compared with wavelengths below 700 nm. 3-(3,4-Dichlorophenyl)-1, 1-dimethylurea abolished this difference in bundle sheath cells. After illumination for 1 minute or longer in bundle sheath cells, reduction of cytochrome f in the dark was rapid only if the wavelength of the illuminating light was below 700 nm. In the presence of 3-(3,4-dichlorophenyl)-1, 1-dimethlyurea, reduction was slow after illumination at all wavelengths.  相似文献   

17.
Mesophyll and bundle sheath cells of maize leaves ( Zea mays L.) both contain the enzymes ascorbate peroxidase (AP; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) which are involved in hydrogen peroxide detoxification. Since bundle sheath cells of maize are deficient in photosystem II and have high CO2 levels, oxidative stress may be less severe in these cells than in mesophyll cells. The present study was conducted to determine if AP and GR activity levels preferentially increase in mesophyll cells relative to bundle sheath cells when plants are subjected to moderate drought. Although drought inhibited the growth of greenhouse-grown plants, it did not affect the levels of protein, chlorophyll or AP. GR was unaffected by drought in whole leaf tissue and mesophyll cells, but did increase slightly in bundle sheath cells. This slight increase is of questionable biological importance. AP and GR activity levels were similar in mesophyll cells, bundle sheath cells and in whole leaf tissue. The data suggest that moderate drought has little effect on enzymes of the hydrogen peroxide scavenging system and that mesophyll and bundle sheath cells may be exposed to similar levels of hydrogen peroxide.  相似文献   

18.
The structure of cells with calcium oxalate crystals and their nelghbouring cells has been studied by light and transmission electron microscopy at different stages of bean leaf development. Plants were grown with varying calcium supply to identify a possible influence of calcium nutrition on cell structure. Crystals are formed inside the vacuole of already highly vacuolated cells of bundle sheath extensions. The membrane around the crystal vacuole is continuous with the plasmalemma. The crystal vacuole contains membraneous structures. In the fully expanded leaf the crystal becomes ensheathed by wall material. Chloroplasts of bundle sheath extension cells, with or without crystals, are smaller, with fewer membranes, and with much narrower stroma regions than those of the palisade parenchyma. There is a stage in the young leaf when only the bundle sheath extension cells without crystals have starch grains in their chloroplasts. As their number is lower in plants grown with high calcium supply this means that, in this case, less cells are competent for photosynthesis.  相似文献   

19.
Ku SB  Shieh YJ  Reger BJ  Black CC 《Plant physiology》1981,68(5):1073-1080
The succulent, cylindrical leaves of the C4 dicot Portulaca grandiflora possess three distinct green cell types: bundle sheath cells (BSC) in radial arrangement around the vascular bundles; mesophyll cells (MC) in an outer layer adjacent to the BSC; and water storage cells (WSC) in the leaf center. Unlike typical Kranz leaf anatomy, the MC do not surround the bundle sheath tissue but occur only in the area between the bundle sheath and the epidermis. Intercellular localization of photosynthetic enzymes was characterized using protoplasts isolated enzymatically from all three green cell types.  相似文献   

20.
Plants that use the highly efficient C4 photosynthetic pathway possess two types of specialized leaf cells, the mesophyll and bundle sheath. In mature C4 leaves, the CO2 fixation enzyme ribulose-1,5-bisphosphate carboxylase (RuBPCase) is specifically compartmentalized to the bundle sheath cells. However, in very young leaves of amaranth, a dicotyledonous C4 plant, genes encoding the large subunit and small subunit of RuBPCase are initially expressed in both photosynthetic cell types. We show here that the RuBPCase mRNAs and proteins become specifically localized to leaf bundle sheath cells during the developmental transition of the leaf from carbon sink to carbon source. Bundle sheath cell-specific expression of RuBPCase genes and the sink-to-source transition began initially at the leaf apex and progressed rapidly and coordinately toward the leaf base. These findings demonstrated that two developmental transitions, the change in photoassimilate transport status and the establishment of bundle sheath cell-specific RuBPCase gene expression, are tightly coordinated during C4 leaf development. This correlation suggests that processes associated with the accumulation and transport of photosynthetic compounds may influence patterns of photosynthetic gene expression in C4 plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号