首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The examination of the standard waves' amplitude and latency of the brain stem auditory evoked response (BAEP) was performed in 20 guinea pigs (males and females, weighing 250 to 300 g). According with the relative loudness of stimuli (90, 70, 50, 30, 10 dB SPL), the latency of BAEP waves was larger (t1 = 0.2 msec), but the conductance time between P1 to P5 was constant (3.1 to 3.6 msec). The highest wave of BAEP was P2 with an amplitude: 90 dB SPL, U = 6.5 +/- 1.2 microV; 70 dB SPL, U = 4.3 +/- 1.0 microV; 50 dB SPL, U = 3.5 +/- 0.6 microV; 30 dB SPL, U = 2.0 +/- 0.4 microV.  相似文献   

2.
Thresholds of the event-related potentials (ERPs) appearance were measured for one stationary and four moving auditory images presented in silence or under forward masking conditions. The difference between thresholds in silence and after noise masker was considered as masking level. Under the forward masking, the amplitude of the ERP to the first click in the test series decreased in guinea pig auditory cortex. Masking level decreased with the time lag between signal and masker and didn't depend on the fused auditory image localization that corresponded to the first click in different test signals. This fact can support the hypothesis that for the long test signals the initial part can be masked more than the final one. The ERPs amplitude to next clicks in test series depended on interaction of two factors: forward masking in the "masker-signal" system and interaction of separate ERPs in the series evoked by the test signal.  相似文献   

3.
Spatiotemporal response patterns in the anterior and dorsocaudal fields of the guinea pig auditory cortex after two-tone sequences were studied in anesthetized animals (Nembutal 30 mg kg−1) using an optical recording method (voltage-sensitive dye RH795, 12 × 12 photodiode array). Each first (masker) and second (probe) tone was 30 ms long with a 10-ms rise-fall time. Masker-probe pair combinations of the same or different frequencies with probe delays of 30–150 ms were presented to the ear contralateral to the recording side. With same-frequency pairs, responses to the probe were inhibited completely after probe delays of less than 50 ms and the inhibition lasted for more than 150 ms, and the inhibition magnitudes in different isofrequency bands of the anterior field were essentially the same. With different-frequency (octave-separated) pairs, responses to the probe were not inhibited completely even after probe delays as short as 30 ms, and the inhibition lasted only for 110–130 ms. Inhibition magnitudes were different from location to location. Accepted: 4 August 1997  相似文献   

4.
5.
6.
Auditory evoked potentials (AEP) can be simultaneously recorded on-line as a succession of 11 waves, through a single input channel of a mini-computer. Since the response waves differ widely in frequency, a computing routine has been developed to display the whole response pattern in a single picture. Based upon a non-linear samples reduction of the digitized response, this routine allows a logarithmic transformation of the time axis. The method improves the identification of the AEP components and provides an objective estimate of the central auditory pathway for both neurophysiological and neuroclinical studies.  相似文献   

7.
8.
Eight white New Zealand rabbits were submitted to auditory stimulation in order to obtain normative BAEP parameters. A monaural alternating 0.1 ms click stimulation at 20 Hz, 90 dB was used. Two series of 1000 responses were averaged (10 ms time-base, 160-3000 Hz band-pass) and highly reproducible peaks were obtained. Peaks P1, P2, P3, P4 were obtained in all ipsilateral recordings, whereas peak P5 was detectable in only 6 animals. In contralateral recordings P1 was absent and the following peaks were similar to those of ipsilateral recordings. Normative values of absolute and interpeak latencies, peak amplitudes and amplitude ratios were obtained. The procedure was repeated 24 hours after basal recordings and measures of test-retest variability were obtained.  相似文献   

9.
Evoked potentials are the transient electrical responses caused by changes in the brain following stimuli. This work uses a physiology-based continuum model of neuronal activity in the human brain to calculate theoretical cortical auditory evoked potentials (CAEPs) from the model’s linearized response. These are fitted to experimental data, allowing the fitted parameters to be related to brain physiology. This approach yields excellent fits to CAEP data, which can then be compared to fits of EEG spectra. It is shown that the differences between resting eyes-open EEG and standard CAEPs can be explained by changes in the physiology of populations of neurons in corticothalamic pathways, with notable similarities to certain aspects of slow-wave sleep. This pilot study demonstrates the ability of our model-based fitting method to provide information on the underlying physiology of the brain that is not available using standard methods.  相似文献   

10.
11.
Fourteen adult patients undergoing open heart surgery under induced hypothermia had median nerve, short-latency somatosensory evoked potentials (SSEPs) recorded during cooling (from 36°C to 19°C) and subsequent rewarming. Similar data on another group of patients who had brain-stem auditory evoked potentials (BAEPs) were also analyzed. Hypothermia produced increased latencies of the major SSEP and BAEP components and the latencies returned to normal with subsequent warming. The temperature-latency relationship during the cooling phase was significantly different from that during the warming phase. For SSEP components the temperature-latency relationship was linear during cooling and curvilinear during warming, whereas for BAEP it was curvilinear both during cooling and warming. Furthermore, the regression curves were different during the two phases of temperature manipulation, particularly for temperatures below 30°C both for SSEP and BAEP components. At the onset of warming there was an initial exaggerated warming response on the evoked potential (EP) latencies and amplitude of the EP components. The temperature-latency regression curves were uniformly less steep during the warming phase compared to those during cooling. These findings suggest the existence of hysteresis in the relationship between temperature and EP latencies. The latencies at a given temperature below 30°C depend on whether that temperature is reached during cooling or during warming.  相似文献   

12.
BAEP records were obtained from 30 brain-dead patients. Three BAEP patterns were observed: (1) no identifiable waves (73.34%), (2) an isolated bilateral wave I (16.66%) and (3) an isolated unilateral wave I (10%). When wave I was present, it was always significantly delayed. Significant augmentation of wave I amplitude was present bilaterally in one case and unilaterally in another. On the other hand, in serial records from 3 cases wave I latency tended to increase progressively until this component disappeared. During the same period. wave I amplitude fluctuations were observed. A significant negative correlation was found for wave I latency with heart rate and body temperature in 1 case. Two facts might explain the progressive delay and disappearance of wave I in brain-dead patients: a progressive hypoxic-ischaemic dysfunction of the cochlea and the eight nnerve plus hypothermia, often present in brain-dead patients. Then the incidence of wave I preservation reported by different authors in single BAEP records from brain-dead patients might depend on the moment at which the evoked potential study was done in relation to the onset of the clinical state. It is suggested that, although BAEPs provide an objective electrophysiological assessment of brain-stem function, essential for BD diagnosis, this technique could be of no value for this purpose when used in isolation.  相似文献   

13.
Long latency event-related auditory evoked potentials, particularly the P300 wave, constitute an objective electrophysiological index of cognitive function. For this reason, these potentials have been studied in a series of 101 patients with multiple sclerosis (MS), classified according to McAlpine's criteria into definite, probable and possible cases. The patients were also classified as depressed or non-depressed according to the DSM-III and Research Diagnostic Criteria. They were also subjected to a battery of psychometric tests.In the patient population the N200 and P300 latencies were increased, as were the P200 latencies, when compared with a control population. This electrophysiological pattern had previously been observed in other conditions characterised by subcortical lesions. Partial correlations (at constant disease duration) between the disability score and the cognitive deficit were found to be significant. Patients with an increased P300 latency had a greater disability and the P300 latency was significantly correlated with the duration of the illness.The N200 and P300 latencies were increased in depressed MS subjects, but this increase did not reach the level of significance. Depression was more frequent in the more severely handicapped patients. This suggests that the origin of the depression seen in multiple sclerosis is only partly organic, and that it is one of the factors contributing to the subcortical cognitive deficit in multiple sclerosis.Progressive forms of the disease exhibited the most profound cognitive deficit, and the most marked increase in P300 latency.  相似文献   

14.
15.
16.
17.
The intensity dependence of auditory evoked potentials (AEPs) recorded epidurally over the primary (AI) and secondary (AII) areas of the auditory cortex was studied in behaving cats during wakefulness, sleep and anesthesia. Four kHz tones of 50, 60, 70, and 80 dB SPL, presented in random order every 2 ± 0.2 s by a bone conductor, elicited clear changes of the AEP amplitudes with increasing stimulus intensity, but individual components displayed different responses curves. AEP components from the AI region showed saturation of their amplitude with stimulus intensity (P13, P34) or no amplitude increase (N19), while amplitude and intensity were linearly related in the AII area. The intensity dependence of the first positive component (P12/P13) was consistently stronger for the AEP recorded from the AI than from the AII area, while later components exhibited no difference between AI and AII. During slow wave sleep, the intensity dependence of this first positive component increased in the two areas, while that of later components decreased. Pentobarbital anesthesia abolished almost all later components and depressed the intensity dependence of the first positive component both in the AI and AII area. These results indicate that (1) clear intensity dependence of AEP exists in the cat auditory cortex and (2) this intensity dependence, especially that of the first positive AEP component, shares functional similarities to the human augmenting/reducing phenomenon in the auditory modality concerning regional differences and sleep-waking cycle.  相似文献   

18.
Evoked potential audiometry and brain-stem auditory evoked potentials were evaluated in 15 patients with systemic brucellosis in whom brucella meningitis was suspected clinically. In 8 patients cerebrospinal fluid (CSF) was abnormal with high brucella titre, and evoked potentials were abnormal in all of them. In 7 patients the CSF was normal and evoked potentials were also normal. Brain-stem auditory evoked potential abnormalities were categorised into 4 types: (1) abnormal wave I, (2) abnormal wave V, both irreversible, (3) prolonged I–III interpeak latencies, and (4) prolonged I–V interpeak latencies, both reversible. These findings are of important diagnostic value and correlate well with the clinical features, aetiopathogenesis and final outcome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号