首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fast and slow mammalian muscle myosins differ in the heavy chain sequences (MHC-2, MHC-1) and muscles expressing the two isoforms contract at markedly different velocities. One role of slow skeletal muscles is to maintain posture with low ATP turnover, and MHC-1 expressed in these muscles is identical to heavy chain of the beta-myosin of cardiac muscle. Few studies have addressed the biochemical kinetic properties of the slow MHC-1 isoform. We report here a detailed analysis of the MHC-1 isoform of the rabbit compared with MHC-2 and focus on the mechanism of ADP release. We show that MHC-1, like some non-muscle myosins, shows a biphasic dissociation of actin-myosin by ATP. Most of the actin-myosin dissociates at up to approximately 1000 s(-1), a very similar rate constant to MHC-2, but 10-15% of the complex must go through a slow isomerization (approximately 20 s(-1)) before ATP can dissociate it. Similar slow isomerizations were seen in the displacement of ADP from actin-myosin.ADP and provide evidence of three closely related actin-myosin.ADP complexes, a complex in rapid equilibrium with free ADP, a complex from which ADP is released at the rate required to define the maximum shortening velocity of slow muscle fibers (approximately 20 s(-1)), and a third complex that releases ADP too slowly (approximately 6 s(-1)) to be on the main ATPase pathway. The role of these actin-myosin.ADP complexes in the mechanochemistry of slow muscle contraction is discussed in relation to the load dependence of ADP release.  相似文献   

3.
A comparison of fibroblast and smooth muscle myosins   总被引:6,自引:0,他引:6  
K Burridge 《FEBS letters》1974,45(1):14-17
  相似文献   

4.
Assembly of cytoplasmic and smooth muscle myosins.   总被引:6,自引:0,他引:6  
Filaments formed from a variety of smooth and non-muscle myosins are dynamic polymers whose phosphorylation-dependent assembly and disassembly can be coupled to changes in enzymatic activity. Phosphorylation-insensitive assembly, which allows independent control of activity and polymerization, is an alternative mechanism used by Acanthamoeba myosin. Domains of the tail responsible for assembly and regulation have now been identified for a number of myosins.  相似文献   

5.
6.
The 130- and 125-kDa heavy chains of Acanthamoeba myosins IA and IB were radioactively labeled at either the regulatory phosphorylation site or the catalytic site and then subjected to controlled proteolysis by either trypsin or chymotrypsin. The labeled and unlabeled peptides generated during the course of proteolysis were identified by autoradiography and Coomassie Blue staining after separation by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. The relative positions of the phosphorylation and active sites could be deduced. The catalytic site of myosin IA is most probably within 38 kDa of one end of the 130-kDa heavy chain, and the phosphorylation site, which can be no more than 40 kDa away from the catalytic site, would then be between 38 and 78 kDa of that same end of the heavy chain. Possibly, the phosphorylation site is further restricted to the region between 38 and 64 kDa from the end of the heavy chain. The catalytic and phosphorylation sites of myosin IB are both contained within a segment of 62 kDa at one end of the 125-kDa heavy chain and are within 40 kDa of each other. The phosphorylation site may be restricted to a small segment between 60 and 62 kDa from one end of the heavy chain which would limit the possible position of the catalytic site to the region between 20 and 60 kDa of that end.  相似文献   

7.
8.
Antibodies to smooth muscle and non-muscle myosin allow the development of smooth muscle and its capillary system in the embryonic chicken gizzard to be followed by immunofluorescent techniques. Although smooth muscle development proceeds in a serosal to luminal direction, angiogenetic cell clusters develop independently at the luminal side close to the epithelial layer, and the presumptive capillaries invade the developing muscle in a luminal to serosal direction. The smooth muscle and non-muscle myosin heavy chains in this avian system cannot be separated by SDS polyacrylamide gel electrophoresis and do not show isoform specificity in immunoblotting, unlike the system found in mammals. Only two myosin heavy chains with Mr of 200 and 196 kDa were separable and considerable immunological cross-reactivity was found between the denatured myosin isoform heavy chains.  相似文献   

9.
We have used two in vitro motility assays to study the relative movement of actin and myosin from turkey gizzards (smooth muscle) and human platelets. In the Nitella-based in vitro motility assay, myosin-coated polymer beads move over a fixed substratum of actin bundles derived from dissection of the alga, Nitella, whereas in the sliding actin filament assay fluorescently labeled actin filaments slide over myosin molecules adhered to a glass surface. Both assay systems yielded similar relative velocities using smooth muscle myosin and actin under our standard conditions. We have studied the effects of ATP, ionic strength, magnesium, and tropomyosin on the velocity and found that with the exception of the dependence on MgCl2, the two assays gave very similar results. Calcium over a concentration of pCa 8 to 4 had no effect on the velocity of actin filaments. Phosphorylated smooth muscle myosin propelled filaments of smooth muscle and skeletal muscle actin at the same rate. Phosphorylated smooth muscle and cytoplasmic myosin monomers also moved actin filaments, demonstrating that filament formation is not required for movement.  相似文献   

10.
Myorod, also known as catchin, a newly discovered component of molluscan smooth muscle thick filaments, is an alternative product of the myosin heavy chain gene. It contains a C-terminal rod part that is identical to that part of myosin and a unique N-terminal domain that is very small relative to the myosin head domain. The role of myorod in contraction or relaxation of this muscle type is unknown. In the present study we demonstrated that myorod was phosphorylated not only by a kinase endogenous to molluscan myosin and twitchin but also to vertebrate smooth muscle myosin light chain kinase (MLCK). The rates and maximal levels of phosphorylation were up to threefold higher than those observed by protein kinase A with clear optima at the physiological salt concentrations. Using a mild digestion with chymotrypsin we isolated an 11 kDa phosphopeptide and showed that the phosphorylation site was located at the N-terminal domain of myorod at Thr 141 position. The sequence around this site exhibited a high degree of similarity to that expected for the substrate recognition site of MLCK. The phosphorylation rates strongly depended on the ionic conditions indicating that this site could be readily sterically blocked during myorod polymerization. Another component of the thick filaments involved in regulation of the catch state, twitchin, was phosphorylated by MLCK and exhibited endogenous myorod kinase and MLCK activities. A possible role of these phosphorylation reactions in the regulation of molluscan smooth muscles is discussed.  相似文献   

11.
Studies of catalysis by -glucuronidase. Active site   总被引:1,自引:0,他引:1  
  相似文献   

12.
Summary— The distribution of smooth muscle (SM)-type myosin heavy chain isoforms in several bovine muscular and non-muscular (NM) tissues was evaluated by immunofluorescence tests using monoclonal antibodies SM-E7, reactive with 204 (SM1) and 200 (SM2) kDa isoforms, and SM-F11, specific for SM2 isoform. SM-E7 reacted equally with vascular, respiratory and intestinal SM tissues, whereas SM-F11 stained heterogeneously SM cells in the various muscular systems examined and in some peculiar tissues was unreactive (perisinusoidal cells of hepatic lobule, pulmonary interstitial cells and intestinal muscularis mucosae) or uniquely reactive (nerve cells). On the whole, our findings indicate that SM1 and SM2 isoforms are unequally distributed at the cellular level in various SM and NM tissues and support previous results obtained with tissue extracts and electrophoretic procedures.  相似文献   

13.
J Ku?nicki 《FEBS letters》1986,204(2):169-176
Reversible phosphorylation of myosin subunits is observed in almost all eukaryotic cells. The data concerning sites and effects of phosphorylation on actin-activated ATPase activity of myosin and on its filament formation are described. These observations are discussed in terms of possible evolutionary trends and rules which may govern the process of myosin phosphorylation.  相似文献   

14.
Active site peptides of rhodanese   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
The motions of water molecules, the acyl moiety, the catalytic triad, and the oxyanion binding site of acyl-chymotrypsin were studied by means of a stochastic boundary molecular dynamics simulation. A water molecule that could provide the nucleophilic OH? for the deacylation stage of the catalysis was found to be trapped between the imidazole ring of His-57 and the carbonyl carbon of the acyl group. It makes a hydrogen bond with the Nε2 of His-57 and is heldin place through a network of hydrogen-bonded water molecules in theactive site. The water molecule was found as close as 2.8 Å to the carbonyl carbon. This appears to be due to the constraints imposed by nonbonded interaction in the active site. Configurations were found in which one hydrogen of the trapped water shared a bifurcated hydrogen bond with His-57-Nε2 and Ser-195-0γ with the water oxygen very close to the carbonyl carbon. The existence of such a water molecule suggests that large movement of the His-57 imidazole ring between positions suitable for providing general-base catalyzed assistance and for providing general-acid catalyzed assistance may notbe required during the reaction. The simulation indicates that the side chains of residues involved in catalysis (i.e., His-57, Ser-195, and Asp-102) are significantly less flexible than other side chains in the protein. The 40% reduction in rms fluctuations is consistent with a comparable reduction calculated from the temperature factors obtained in the X-ray crystal-lographic data of γ-chymotrypsin. The greater rigidity of active site residues seems to result from interconnected hydrogen bonding networks among the residues and between the residues and the solvent water in the active site. © Wiley-Liss, Inc.  相似文献   

17.
18.
19.
20.
N-Chloro-D-leucine is an irreversible inhibitor or D-amino acid oxidase on a time scale of seconds. Studies with N-[36C]chloro-D-leucine, N-chloro-D-[1-14C]leucine and N-chloro-D-[4,5-3H]leucine show that the modified enzyme has been chlorinated at a site, or sites, on the apoenzyme. The 36Cl measurements agree with titrations of catalytic activity in showing that two chlorine equivalents are incorporated per active site flavin. Kinetically, the interaction with N-chloro-D-leucine behaves in a manner which is consistent with consecutive chlorinations of an amino acid residue, or residues, in the active site region by the first 2 molecules of N-chloro-D-leucine to be processed by the enzyme. The effect of chlorination of the enzyme on the steady state parameters for oxidation of D-alanine is entirely explained by a single perturbation, namely, a 1000-fold reduction in the specific rate of flavin reduction as measured directly by rapid reaction techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号