首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The nuclear enzyme poly(ADP-ribose) polymerase is involved in basic cellular processes such as DNA replication and repair, cell differentiation and transformation, gene expression. We have studied the effect of 2AAF, a genotoxic aromatic amine, on pADPRP activity during DNA synthesis stimulated by EGF, using the cultured rat hepatocytes model. DNA synthesis was measured as [3H]thymidine incorporated/microgram DNA while pADPRP activity was expressed in pmol[32P]NAD incorporated/min/microgram DNA. Our results show that 2AAF treatment of EGF-stimulated rat hepatocytes induces a full block of DNA replication which is preceded and accompanied by a net inhibition of endogenous and total pADPRP activity, respectively. A block in pADPRP activity in normal hepatocytes, exposed to 2AAF in vitro or in vivo, could play a key role in cell transformation. Our data add further information on the possible involvement of this nuclear catalytic activity during DNA replication.  相似文献   

2.
Studies in vivo using inhibitors of eicosanoid synthesis suggested that prostaglandins may play a role in mediating tumor promotion in liver by agents such as phenobarbital (PB). However, it is not clear whether any stimulation of arachidonic acid metabolism/prostaglandin formation results directly from the action of tumor promoters on hepatocytes or indirectly from effects of promoters on Kupffer cells or other non-hepatocytes. Our laboratory has been utilizing relatively pure populations of rat hepatocytes under the defined conditions of primary cultures, to investigate growth-stimulatory actions of tumor promoters, an important element in the promotion stage of carcinogenesis. It has been shown that most if not all liver tumor promoters tested stimulate hepatocyte DNA synthesis when added in combination with factors such as EGF, insulin, and glucocorticoid. In the present study, we sought evidence for a role of prostaglandins (PGs) in the direct growth-stimulatory actions of tumor promoters on hepatocytes. PGE(2), PGF(2 alpha), and PGD(2) cause concentration-dependent stimulation of hepatocyte DNA synthesis, while arachidonic acid was without any effect. PGE(2) and PGF(2 alpha) required the presence of dexamethasone to exert significant effects. These PGs did not further augment the stimulatory effect of EGF. In contrast, PGD(2) stimulated DNA synthesis in the presence or absence of insulin, dexamethasone, or EGF. The effect of tumor promoters on arachidonic acid metabolism, as measured by [(3)H]arachidonic acid release and PGE(2) production, was determined. The phorbol ester TPA significantly increased [(3)H]arachidonic acid release as well as PGE(2) formation in hepatocytes in line with known effects in other cell types. However, liver tumor promoters phenobarbital (PB), alpha-hexachlorocycohexane (HCH), 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), and pregnenolone-16 alpha-carbonitrile (PCN) were without effects. Finally, inhibitors of arachidonic acid metabolism were tested for effects on the ability of TPA or liver tumor promoters to stimulate DNA synthesis by direct action on cultured hepatocytes. In all cases, lack of selective inhibition was observed. Taken together, the results show that while prostaglandins may directly stimulate DNA synthesis in hepatocytes, they are unlikely to mediate the direct growth-stimulatory actions of liver tumor promoters.  相似文献   

3.
The mechanisms of tumor promotion in liver by various xenobiotics of diverse structure are not well understood. However, these tumor promoters share the ability to exert growth-stimulatory effects on hepatocytes. Our laboratory has been utilizing normal rat hepatocytes under defined conditions of primary cultures, to investigate growth-stimulatory actions of liver tumor promoters. We have shown that most, if not all, of the liver tumor promoters tested stimulate hepatocyte DNA synthesis when added in combination with epidermal growth factor (EGF), insulin, and glucocorticoids. In the present study, we sought evidence for the role of the Na(+)/H(+) antiporter and cytoplasmic alkalinization in the direct growth-stimulatory actions of tumor promoters on hepatocytes. Hepatocytes cultured under conditions (bicarbonate-buffered medium) where intracellular pH (pH(i)) was independent of extracellular pH (pH(e)), EGF- and insulin-stimulated rates of DNA synthesis were unaffected by modest changes in pH(e). However, under conditions (HEPES-buffered medium) where pH(i) varied in a linear fashion with pH(e), rates of EGF- and insulin-stimulated DNA synthesis were highly dependent on pH(e). Similarly, 12-O-tetradecanoylphorbol-13-acetate (TPA) and alpha-hexachlorocyclohexane (HCH)-stimulated DNA synthesis were pH(e)-dependent but were stimulatory over different pH(e) ranges, suggesting that these promoters may act by distinct mechanisms. Chemicals that are capable of inducing rapid cytoplasmic alkalinization, ammonium chloride (1 and 15 mM) and monensin (0.5 microM), were found to stimulate hepatocyte DNA synthesis. The role of the Na(+)/H(+) antiport in controlling pH(i) of hepatocytes was demonstrated by artificially acidifying 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein acetoxymethyl (BCECF)-loaded isolated hepatocytes with 20 mM sodium acetate and the use of specific inhibitors. Amiloride and its analogues inhibited pH(i) recovery from the acid load in a dose dependent manner and the relative potency of these inhibitors paralleled their K(i) values for the Na(+)/H(+) antiport. At concentrations that stimulate hepatocyte DNA synthesis, some liver tumor promoters phenobarbital (PB) and HCH, were found to cause a rapid rise pH(i) in isolated hepatocytes which was sensitive to amiloride and its analogues. Taken together, our data suggest that activation of Na(+)/H(+) antiport activity may be one mechanism whereby some liver tumor promoters stimulate hepatocytes DNA synthesis. This study has implications for the mechanisms of tumor promotion in liver carcinogenesis.  相似文献   

4.
The liver tumor promoter, phenobarbital, directly applied to cultured, adult rat hepatocytes at concentrations of greater than 1 mM, decreases cellular surface binding of EGF. This effect of phenobarbital resembles that of 4 beta-phorbol-12 alpha-myristate-13 beta-acetate (TPA) in that both decrease EGF receptor number, but do not affect receptor affinity. The effects of the two tumor promoters differ however, in that only TPA reduces high affinity EGF binding by A431 cells. They also differ in that TPA, but not phenobarbital, causes redistribution of protein kinase C from a soluble to a membranous hepatocyte subcellular fraction. These data indicate that decreased EGF binding is a common hepatocyte response to the tumor promoters, TPA and phenobarbital, but that this response can be mediated by either a TPA-activated, protein kinase C-dependent pathway or by a phenobarbital-sensitive, protein kinase C-independent pathway.  相似文献   

5.
6.
Tumor promoters cause a variety of effects in cultured cells, at least some of which are thought to result from activation of the Ca2+-phospholipid-stimulated protein kinase C. One action of tumor promoters is the modulation of the binding and phosphorylation of the epidermal growth factor (EGF) receptor in A431 cells. To determine if these compounds act on the EGF receptor by substituting for the endogenous activator of C kinase, diacylglycerol, we compared the effects of the potent tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) with those of the synthetic diacylglycerol analog 1-oleyl 2-acetyl diglycerol (OADG). When A431 cells were treated with TPA, the subcellular distribution of C kinase activity shifted from a predominantly cytosolic location to a membrane-associated state; OADG also caused the disappearance of cytosolic C kinase activity. The shift in the subcellular distribution of C kinase, caused by TPA or OADG, correlated with changes in binding and phosphorylation of the EGF receptor. OADG, like TPA, caused loss of binding to an apparent high affinity class of receptors, blocked EGF-induced tyrosine phosphorylation of the EGF receptor, and stimulated phosphorylation of the EGF receptor at both serine and threonine residues. No difference between the phosphopeptide maps of receptors from cells treated with OADG or TPA was observed. Thus, it appears that tumor promoters can exert their effects on the EGF receptors by substituting for diacylglycerol, presumably by activating protein kinase C. Further, these results suggest that endogenously produced diacylglycerol may have a role in normal growth regulatory pathways.  相似文献   

7.
Epidermal growth factor (EGF) added in a single dose (between 10–16 and 1.7 ± 10–9M) to neonatal rat hepatocytes in primary culture with subsequent incubation for 12 and 24 hours in Eagle's MEM fortified with 10% (v/v) FBS stimulated their entry into S and M phases, as shown by (3H)thymidine labeling and autoradiography and by a 1-hour exposure to colchicine (0.1 mM). Growth stimulation by EGF was detectable after 4 hours, peaking between 12 and 16 hours, and thereafter declining in intensity. Rat hepatocytes exposed for 72 hours (between the fourth and the seventh day in vitro) to no serum or to 10% fresh FBS possessed similar growth rates and absolute numbers in the cultures. A 24-hour exposure to 20 to 50% FBS stimulated hepatocytic DNA synthesis and mitotic activity and resulted (except for the 50% FBS treatment) in increased hepatocytes' numbers, which were relatively greater than the concurrent increases in connective tissue cell numbers. In serum-devoid medium EGF (10–11M) enhanced hepatocytic mitotic, but not DNA-synthetic activity. To be fully effective EGF required a 10% FBS addition to the medium, then eliciting within 24 hours a marked increase in hepatocytes' number with respect to cultures incubated with 10% serum only. When associated with 20 to 30% FBS, EGF stimulated parenchymal cell growth at rates slightly higher, but not significantly different, than those elicited by the same serum concentrations alone. However, when used in conjunction with 10 to 30% FBS, EGF preferentially increased the number of hepatocytes rather than that of non-parenchymal cells. Moreover, comparative proliferation kinetic studies showed that in the presence of 10% FBS, an equimolar (10–14M) mixture of EGF, insulin, and glucagon promoted an early and marked increase in the DNA-synthetic and mitotic activities of hepatocytes, which peaked after 8 hours. Within a 24-hour time lag this growth stimulation was as effective in increasing the final hepatocytes' number as was a 1000-fold higher EGF concentration, and was twice as active as either an equimolar (10–14M) mixture of the two pancreatic hormones or EGF by itself at 10–14M. These results show that the growth-promoting effect of EGF on primary neonatal rat hepatocytes is modulated by serum factor(s) and can be additively amplified by the simultaneous administration of subphysiological doses of glucagon and insulin.  相似文献   

8.
Evidence is presented to support our previously proposed hypothesis that the hyperplastic effect of tumor promoters is related to their ability to alter existing physiological levels of growth factors in target tissues. Epidermal growth factor and phorbol ester tumor promoters acted synergistically at low (0.001-0.05 ng/ml) but not high (greater than 0.1 ng/ml) EGF concentrations to induce DNA synthesis in cultured Rat-1 fibroblast cells. The degree of synergism correlated with the tumor-promoting ability of the compound. The tumor promoters decreased 125I-EGF binding to cellular receptors in a dose-dependent manner that also correlated with the tumor-promoting ability of the compound. The inhibition of EGF binding by phorbol ester compounds resulted in a decrease in the amount of EGF degraded as compared to control cultures. At limiting EGF concentrations, the sparing of EGF degradation resulted in an increase in the amount of EGF remaining in the culture medium after 12 h of incubation and a concomitant increase in the amount of EGF bound to phorbol ester-treated cells at this time as compared to control cultures. The ability of a phorbol ester compound to alter EGF degradation and to stimulate DNA synthesis synergistically with EGF correlated with the tumor-promoting ability of the compound and occurred only a low EGF concentrations.  相似文献   

9.
10.
11.
EGF has been shown to augment albumin and apolipoprotein A-I secretion by cynomolgus monkey hepatocytes in primary culture without stimulating cell division. This study was undertaken to determine what effect EGF had on apo B secretion by those hepatocytes. The results indicate that EGF (3 nM final concentration) severely inhibits the rate at which apo B accumulates in the culture medium of primate hepatocytes. That effect was evident within 48 hours of treatment, and by 72 hours the rate that apo B accumulated was less than half that of cells treated with a hormone-free medium. However, the apo B mRNA levels in the EGF-treated cells were more than double those of hepatocytes given the hormone-free medium. These data indicate that EGF has a potent effect on the rate at which apo B accumulates in the culture medium of primate hepatocytes and that the effect is independent of apo B gene expression.  相似文献   

12.
Epidermal growth factor (EGF) and tetradecanoylphorbol acetate (TPA) rapidly stimulated the production of lactate by hepatocytes isolated from fed rats. Our results indicate that enzymes of both glycolysis and the pentose phosphate pathway are involved in these actions. EGF stimulated CO2 release from the 1-position of glucose, and caused a small but significant increase in pyruvate kinase activity. In addition, EGF caused a rise in fructose 1,6-bisphosphate and fructose 2,6-bisphosphate concentrations, indicating activation of phosphofructokinase. TPA did not alter the concentrations of these sugar phosphates, but did cause an increased lactate production and CO2 production from the 1-position of glucose similar to EGF. Furthermore, the EGF stimulation of lactate formation was independent of the presence of medium Ca2+. Phenylephrine stimulation of this process, in parallel incubations, was entirely dependent upon the presence of Ca2+ in the medium. We conclude that EGF stimulates glycolysis and the pentose phosphate pathway in isolated hepatocytes from fed rats. The duplication of these actions by TPA suggests that protein kinase C is a mediator of EGF action in hepatocytes.  相似文献   

13.
We investigated the effects of microbial protease inhibitors, in particular the aminopeptidase inhibitor bestatin, on DNA synthesis and cell division induced by epidermal growth factor (EGF) in hepatocytes. Although bestatin did not significantly affect binding of EGF to hepatocytes, it inhibited EGF-induced DNA synthesis and cell division. DNA synthesis in rat hepatocytes was maximal 24-26 h after EGF addition to the medium. The time required for maximal DNA synthesis was not affected if bestatin was removed less than 12 h after addition, but synthesis was partially inhibited if bestatin was added to the medium several hours after EGF addition, depending on the time of bestatin addition. Our results suggest that bestatin arrests the new cell cycle induced by EGF at about 12 h after the initiation. Considering also our results obtained by employing other protease inhibitors, we concluded that specific proteases play important roles in hepatocyte DNA synthesis and cell division induced by EGF.  相似文献   

14.
A low concentration (10(-11) mol/l) of epidermal growth factor (EGF) and/or an equimolar (10(-14) mol/l) mixture of glucagon and insulin stimulated DNA synthesis in hepatocytes in 4-day-old primary cultures of neonatal rat liver. EGF seems to have acted by inducing quiescent hepatocytes to begin cycling, while the glucagon-insulin combination seems to have acted mainly by shortening the cell cycle time. Incubation in low calcium medium blocked untreated hepatocytes in the G1 phase of their cycle and prevented EGF and the glucagon-insulin mixture from stimulating DNA synthesis. Nevertheless, hepatocytes in calcium-deficient medium did respond to these agents, as they reached a late stage of prereplicative development before being blocked: in fact, they initiated DNA synthesis soon after the addition of calcium. EGF, but not the glucagon-insulin combination, also enabled the already cycling hepatocytes (but not the newly activated ones) to overcome the block imposed by the extracellular calcium deficiency after a delay of several hours.  相似文献   

15.
The cDNA of human poly(ADP-ribose) polymerase (pADPRP), encoding the entire protein, was subcloned into the Escherichia coli expression plasmid pYUb. In this expression system, the carboxyl terminus of ubiquitin is fused to the amino terminus of a target protein, in this case pADPRP, stabilizing the accumulation of the cloned gene product. Following induction of the transformed cells, the sonicated extract contained a unique protein immunoreactive with both pADPRP and ubiquitin antibodies and corresponding to the predicted mobility of the fusion protein in SDS-PAGE. Fusion of ubiquitin to pADPRP increased the yield of pADPRP approximately 10-fold compared to that of the unfused enzyme. The resulting recombinant fusion protein had catalytic properties which were nearly identical to those of native pADPRP obtained from mammalian tissues. These properties included specific activity, Km for NAD, response to DNA strand breaks, response to Mg2+, inhibition by 3-aminobenzamide, and activity in activity gel analysis. An initial analysis by deletion mutagenesis of pADPRP's functional domains revealed that deletions in the NAD binding domain eliminated all activity; however, partial polymerase activity resulted from deletion in the DNA binding or automodification domains. The activities were not enhanced by breaks in DNA. We further report a colony filter screening procedure designed to identify functional polymerase molecules which will facilitate structure/function studies of the polymerase.  相似文献   

16.
1. In hepatocytes, epidermal growth factor (EFG) (a) increased the rate of 45Ca2+ exchange in cells incubated at 1.3 mM extracellular Ca2+, (b) increased the activity of glycogen phosphorylase a and the intracellular free Ca2+ concentration (measured with quin2) in a process dependent on the concentration of extracellular Ca2+, and (c) enhanced the increase in glycogen phosphorylase activity which follows the addition of Ca2+ to cells previously incubated in the absence of Ca2+. It is concluded that EGF stimulates plasma-membrane Ca2+ inflow. 2. The effects of the combination of EGF and vasopressin on the rate of 45Ca2+ exchange and on the rate of increase in glycogen phosphorylase activity were the same as those of vasopressin alone. 3. The amount of 45Ca2+ released by EGF from internal stores was about 30% of that released by vasopressin. No detectable increase in [3H]inositol mono-, bis- or tris-phosphate was observed after the addition of EGF to cells labelled with myo-[3H]inositol. 4. In hepatocytes isolated from rats treated with pertussis toxin, the effects of EGF and vasopressin on phosphorylase activity (measured at 1.3 mM-Ca2+) and on the rate of Ca2+ inflow (measured with quin2) were markedly decreased compared with those in normal cells. 5. Treatment with pertussis toxin did not impair the ability of vasopressin to release Ca2+ from internal stores, but decreased vasopressin-stimulated [3H]inositol polyphosphate formation by 50%. 6. It is concluded that the mechanism(s) by which vasopressin and EGF stimulate plasma-membrane Ca2+-inflow transporters in hepatocytes involves a GTP-binding regulatory protein sensitive to pertussis toxin, and does not require an increase in the concentration of inositol trisphosphate comparable with that which induces the release of Ca2+ from the endoplasmic reticulum.  相似文献   

17.
Additivity of the proliferative effects of HGF/SF and EGF on hepatocytes   总被引:1,自引:0,他引:1  
The additivity of DNA synthesis induced by hepatocyte growth factor/scatter factor (HGF/SF) and epidermal growth factor (EGF) was revealed in periportal hepatocytes (PPH), perivenous hepatocytes (PVH), and primary hepatocytes. Furthermore, additivity of the signal transduction pathway of HGF/SF and EGF was investigated (i.e., the activity of mitogen-activated protein kinase (MAPK) induced by HGF/SF and EGF), but it was not seen in PPH, PVH, or primary hepatocytes, although wortomannin, a PI 3-kinase inhibitor, abolished the additivity. The additivity of DNA synthesis induced by HGF/SF and EGF was not related to hepatocyte heterogeneity, but to a difference in the signal transduction pathway, probably another pathway that is different from the classical MAPK (MAPK/ERK1,2) path.  相似文献   

18.
19.
The conditions of primary culture for rat hepatocytes was investigated on the releasing effect of Plasminogen Activator (PA). The culture method using Collagen Coated Dish (CCD-method) which is currently available and the ordinary culture method using Plastic Culture Dish (PCD-method) were employed for that purpose in a comparative way. The effect of the addition of some supplements, that is FN, Aprotinin, EGF were also investigated. The following results were obtained. The dissociated rat hepatocytes formed a monolayer with pavementlike morphology at 24-48 hours after seeding. No difference was observed in the morphology of hepatocytes during the culture period between the two methods, although CCD-method allowed 120 hours culture, whereas PCD-method allowed 72 hours. The PA activity was demonstrated on the hepatocytes by either culture method according to the fibrinolysis autography. The cultured hepatocytes released PA into the medium continuously as long as the viability and morphology of the cells were maintained in good state. The PA activity reached the maximum after 96 hours culture in CCD-method, whereas it reached the maximum after 48 hours in PCD-method. The addition of Aprotinin to the culture medium was not necessary for PA release in CCD-method in contrast to PCD-method. When EGF was discontinued in the culture medium, the release of PA was reduced in association with the occurring of morphological disintegration of hepatocytes.  相似文献   

20.
Adult rat hepatocytes in primary culture responded to epidermal growth factor (EGF) by increased DNA synthesis. When hepatocytes were cultured in Leibovitz L-15 medium, their response to EGF was low compared with that in Williams' medium E or Koga's medium L. Furthermore, female rat hepatocytes showed almost no response to the mitogenic action of EGF compared with male rat hepatocytes in L-15 medium. Addition of glutamic acid (1–20 μM) to EGF-containing L-15 medium not only enhanced DNA synthesis > tenfold in both male and female hepatocytes, but eliminated the sex differences in DNA synthesis. Aspartic acid, glutamine, or ornithine at 20 mM did not replace the glutamic acid effect on DNA synthesis. Proline also enhanced EGF-induced DNA synthesis, although it was less effective than glutamic acid. Therefore, this effect may be specific to a high concentrations of glutamic acid. Glutamic acid by itself did not stimulate DNA synthesis at any concentrations tested. In the presence of glutamic acid, EGF showed a dose-dependent (0.5–20 ng/ml) stimulation of DNA synthesis with a maximal effect at 10 ng/ml. Almost the same effect was obtained with transforming growth factor alpha (0.5–20 ng/ml). Glutamic acid also induced an expansion of the mitogenic action of angiotensin II. Since glutamic acid did not affect [125I]EGF binding to hepatocytes or its processing, the effect may occur internal to the receptor. These results suggest that glutamic acid modulates the sensitivity of the hepatocyte response to mitogens © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号