首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plantar heel pain is a common condition that is often exacerbated by the repetitive stresses of walking. Treatment usually includes an in-shoe intervention designed to reduce plantar pressure under the heel by using insoles and a variety of off-the-shelf products. The design process for these products is often intuitive in nature and does not always rely on scientifically derived guidelines. Finite element analysis provides an efficient computational framework to investigate the performance of a large number of designs for optimal plantar pressure reduction. In this study, we used two-dimensional plane strain finite element modeling to investigate 27 insole designs. Combinations of three insole conformity levels (flat, half conforming, full conforming), three insole thickness values (6.3, 9.5 and 12.7 mm) and three insole materials (Poron Cushioning, Microcel Puff Lite and Microcel Puff) were simulated during the early support phase of gait. Plantar pressures predicted by the model were validated by experimental trials conducted in the same subject whose heel was modeled by loading the bare foot on a rigid surface and on foam mats. Conformity of the insole was the most important design variable, whereas peak pressures were relatively insensitive to insole material selection. The model predicted a 24% relief in pressure compared to barefoot conditions when using flat insoles; the reduction increased up to 44% for full conforming insoles.  相似文献   

2.
Knowing the ground reaction forces (GRFs) during walking has various biomechanical applications in injury prevention, gait analysis, as well as prosthetic and footwear design. The current study presents a method for predicting the GRFs in level and incline/decline walking that may be used in various outdoor biomechanics studies geared towards the above applications. The method was developed to predict the complete set of GRFs at walking inclinations of 0°, ±5°, ±10°, ±15°, and ±20°. Plantar pressure insoles were used to obtain inclination-specific, linear regression models based on three periods of gait stance phase, and the model-determined GRFs were compared with those measured from a forceplate. The three periods were determined based on the observed shifting of load-bearing insole sensors from heel to forefoot during walking, i.e., heel-strike, midstance, and toe-off. Six subjects wearing minimalist shoes fitted with plantar pressure insoles containing 99 pressure sensors performed ten walking trials at each of the aforementioned inclinations on an adjustable ramp with an embedded forceplate. Data from contact of the instrumented shoes with the forceplate were used to create linear regressions to transform insole pressure data into a complete set of GRFs. The root mean square error (RMSE) over peak recorded values were on average 10%, 3%, 21% for level walking and 11%, 4%, 23% for ramp walking in the respective anteroposterior, vertical, and mediolateral directions. The multistage linear regression model developed in the current study may be an acceptable option for estimating GRFs during walking in various environments without the restraint of a forceplate.  相似文献   

3.

Objective

Previous studies have demonstrated that ankle muscle fatigue alters postural sway. Our aim was to better understand postural control mechanisms during upright stance following plantar flexor fatigue.

Method

Ten healthy young volunteers, 25.7 ± 2.2 years old, were recruited. Foot center-of-pressure (CoP) displacement data were collected during narrow base upright stance and eyes closed (i.e. blindfolded) conditions. Subjects were instructed to stand upright and as still as possible on a force platform under five test conditions: (1) non-fatigue standing on firm surface; (2) non-fatigue standing on foam; (3) ankle plantar flexor fatigue, standing on firm surface; (4) ankle plantar flexor fatigue, standing on foam; and (5) upper limb fatigue, standing on firm surface. An average of the ten 30-s trials in each of five test conditions was calculated to assess the mean differences between the trials. Traditional measures of postural stability and stabilogram-diffusion analysis (SDA) parameters were analyzed.

Results

Traditional center of pressure parameters were affected by plantar flexor fatigue, especially in the AP direction. For the SDA parameters, plantar flexor fatigue caused significantly higher short-term diffusion coefficients, and critical displacement in both mediolateral (ML) and anteroposterior (AP) directions. Long-term postural sway was different only in the AP direction.

Conclusions

Localized plantar flexor fatigue caused impairment to postural control mainly in the Sagittal plane. The findings indicate that postural corrections, on average, occurred at a higher threshold of sway during plantar flexor fatigue compared to non-fatigue conditions.  相似文献   

4.

Background

Current international guidelines advocate achieving at least a 30 % reduction in maximum plantar pressure to reduce the risk of foot ulcers in people with diabetes. However, whether plantar pressures differ in cases with foot ulcers to controls without ulcers is not clear. The aim of this study was to assess if plantar pressures were higher in patients with active plantar diabetic foot ulcers (cases) compared to patients with diabetes without a foot ulcer history (diabetes controls) and people without diabetes or a foot ulcer history (healthy controls).

Methods

Twenty-one cases with diabetic foot ulcers, 69 diabetes controls and 56 healthy controls were recruited for this case-control study. Plantar pressures at ten sites on both feet and stance phase duration were measured using a pre-established protocol. Primary outcomes were mean peak plantar pressure, pressure-time integral and stance phase duration. Non-parametric analyses were used with Holm’s correction to correct for multiple testing. Binary logistic regression models were used to adjust outcomes for age, sex and body mass index. Median differences with 95 % confidence intervals and Cohen’s d values (standardised mean difference) were reported for all significant outcomes.

Results

The majority of ulcers were located on the plantar surface of the hallux and toes. When adjusted for age, sex and body mass index, the mean peak plantar pressure and pressure-time integral of toes and the mid-foot were significantly higher in cases compared to diabetes and healthy controls (p?<?0.05). The stance phase duration was also significantly higher in cases compared to both control groups (p?<?0.05). The main limitations of the study were the small number of cases studied and the inability to adjust analyses for multiple factors.

Conclusions

This study shows that plantar pressures are higher in cases with active diabetic foot ulcers despite having a longer stance phase duration which would be expected to lower plantar pressure. Whether plantar pressure changes can predict ulcer healing should be the focus of future research. These results highlight the importance of offloading feet during active ulceration in addition to before ulceration.
  相似文献   

5.
Identifying environmental risk factors for musculoskeletal disorders is challenging due to the number of potential confounders. Twins are of particular interest for researchers interested in studying these types of problems due to their inherent control for the influence of genetic factors. In twin studies, this population can allow environmental risk factors to be more easily identified, and this type of study design may allow the role of biomechanics in injury and disease to be further explored. At present, it is unclear if foot function displays more similarity between certain types of twins. In this study, we hypothesized that the plantar pressures of monozygotic (identical) twins would be more similar between pairs than dizygotic (non-identical) twins. We measured static and dynamic plantar pressures from five pairs of each twin type. Statistical parametric modeling was used to compare pressure distributions at the sensor level. For >80% of stance phase, the pixel level analysis indicated that monozygotic twins had less variation in plantar pressure between pairs. The average z-statistic across the entire trial was 0.88 for the monozygotic group and 1.13 for the dizygotic group. In this study we provide evidence of greater similarity of plantar pressures in monozygotic twin pairs compared to dizygotic twins. This finding supports the use of co-twin studies investigating potentially modifiable environmental and biomechanical risk factors for musculoskeletal conditions that affect the foot and ankle.  相似文献   

6.
Orthopedic insole was important for partial foot amputation (PFA) to achieve foot balance and avoid foot deformity. The inapposite insole orthosis was thought to be one of the risk factors of reamputation for foot valgus patient, but biomechanical effects of internal tissues on valgus foot had not been clearly addressed. In this study, plantar pressure on heel and metatarsal regions of PFA was measured using F-Scan. The three-dimensional finite element (FE) model of partial foot evaluated different medial wedge angles (MWAs) (0.0°–10.0°) of orthopedic insole on valgus foot. The effect of orthopedic insole on the internal bone stress, the medial ligament tension of ankle, plantar fascia tension, and plantar pressure was investigated. Plantar pressure on medial heel region was about 2.5 times higher than that of lateral region based on the F-Scan measurements. FE-predicted results showed that the tension of medial ankle ligaments was the lowest, and the plantar pressure was redistributed around the heel, the first metatarsal, and the lateral longitudinal arch regions when MWA of orthopedic insole ranged from 7.5° to 8.0°. The plantar fascias maintained about 3.5% of the total load bearing on foot. However, the internal stresses from foot bones increased. The simulation in this study would provide the suggestion of guiding optimal design of orthopedic insole and therapeutic planning to pedorthist.  相似文献   

7.
Integration of objective biomechanical measures of foot function into the design process for insoles has been shown to provide enhanced plantar tissue protection for individuals at-risk of plantar ulceration. The use of virtual simulations utilizing numerical modeling techniques offers a potential approach to further optimize these devices. In a patient population at-risk of foot ulceration, we aimed to compare the pressure offloading performance of insoles that were optimized via numerical simulation techniques against shape-based devices. Twenty participants with diabetes and at-risk feet were enrolled in this study. Three pairs of personalized insoles: one based on shape data and subsequently manufactured via direct milling; and two were based on a design derived from shape, pressure, and ultrasound data which underwent a finite element analysis-based virtual optimization procedure. For the latter set of insole designs, one pair was manufactured via direct milling, and a second pair was manufactured through 3D printing. The offloading performance of the insoles was analyzed for forefoot regions identified as having elevated plantar pressures. In 88% of the regions of interest, the use of virtually optimized insoles resulted in lower peak plantar pressures compared to the shape-based devices. Overall, the virtually optimized insoles significantly reduced peak pressures by a mean of 41.3 kPa (p < 0.001, 95% CI [31.1, 51.5]) for milled and 40.5 kPa (p < 0.001, 95% CI [26.4, 54.5]) for printed devices compared to shape-based insoles. The integration of virtual optimization into the insole design process resulted in improved offloading performance compared to standard, shape-based devices.Clinical trial registration: ISRCTN19805071, www.ISRCTN.org.  相似文献   

8.
Diabetic foot ulcers are caused by moderate repetitive plantar stresses in the presence of peripheral neuropathy. In severe cases, the development of these foot ulcers can lead to lower extremity amputations. Plantar pressure measurements have been considered a capable predictor of ulceration sites in the past, but some investigations have pointed out inconsistencies when solely relying on this method. The other component of ground reaction forces/stresses, shear, has been understudied due to a lack of adequate equipment. Recent articles reported the potential clinical significance of shear in diabetic ulcer etiology. With the lack of adequate tools, plantar temperature has been used as an alternative method for determining plantar triaxial loading and/or shear. However, this method has not been previously validated. The purpose of this study was to analyze the potential association between exercise-induced plantar temperature increase and plantar stresses. Thirteen healthy individuals walked on a treadmill for 10 minutes at 3.2 km/h. Pre and post-exercise temperature profiles were obtained with a thermal camera. Plantar triaxial stresses were quantified with a custom-built stress plate. A statistically significant correlation was observed between peak shear stress (PSS) and temperature increase (r=0.78), but not between peak resultant stress (PRS) and temperature increase (r=0.46). Plantar temperature increase could predict the location of PSS and PRS in 23% and 39% of the subjects, respectively. Only a moderate linear relationship was established between triaxial plantar stresses and walking-induced temperature increase. Future research will investigate the value of nonlinear models in predicting plantar loading through foot temperature.  相似文献   

9.

Background

Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson’s disease (PD) patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet.

Methods

20 healthy older adults (controls) and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam), under three footwear conditions: 1) barefoot; 2) smooth insoles; and 3) textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway.

Results

On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed.

Conclusions

Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD.  相似文献   

10.
The majority of foot deformities are related to arch collapse or instability, especially the longitudinal arch. Although the relationship between the plantar fascia and arch height has been previously investigated, the stress distribution remains unclear. The aim of this study was to explore the role of the plantar ligaments in foot arch biomechanics. We constructed a geometrical detailed three-dimensional (3-D) finite element (FE) model of the human foot and ankle from computer tomography images. The model comprised the majority of joints in the foot as well as bone segments, major ligaments, and plantar soft tissue. Release of the plantar fascia and other ligaments was simulated to evaluate the corresponding biomechanical effects on load distribution of the bony and ligamentous structures. These intrinsic ligaments of the foot arch were sectioned to simulate different pathologic situations of injury to the plantar ligaments, and to explore bone segment displacement and stress distribution. The validity of the 3-D FE model was verified by comparing results with experimentally measured data via the displacement and von Mise stress of each bone segment. Plantar fascia release decreased arch height, but did not cause total collapse of the foot arch. The longitudinal foot arch was lost when all the four major plantar ligaments were sectioned simultaneously. Plantar fascia release was compromised by increased strain applied to the plantar ligaments and intensified stress in the midfoot and metatarsal bones. Load redistribution among the centralized metatarsal bones and focal stress relief at the calcaneal insertion were predicted. The 3-D FE model indicated that plantar fascia release may provide relief of focal stress and associated heel pain. However, these operative procedures may pose a risk to arch stability and clinically may produce dorsolateral midfoot pain. The initial strategy for treating plantar fasciitis should be non-operative.  相似文献   

11.
Objective measurement of weight bearing during a long-term period can give insight into the postoperative loading of the lower extremity of orthopedic patients to avoid complications. This study investigated the validity of vertical ground reaction force measurements during a long-term period using the Pedar Mobile insole pressure system, by comparing it with a Kistler force platform. In addition, the validity of a new sensor drift correction algorithm to correct for offset drift in the Pedar signal was evaluated. Ground reaction force data were collected during dynamic and static conditions from five healthy subjects every hour for 7 h. A mean offset drift of 14.6% was found after 7 h. After applying the drift correction algorithm the Pedar system showed a high accuracy for the second peak in the ground reaction force-time curve (1.1 to 3.4% difference, p>0.05) and step duration (-2.0 to 4.4% difference, p>0.05). Less accuracy was found for the first peak in the ground reaction force-time curve (5.2 to 12.0% difference; p<0.05 for the first 3 h, p>0.05 for the last 4 h) and, consequently, in the vertical force impulse (5.5 to 11.0% difference, p>0.05). The Pedar Mobile system appeared to be a valid instrument to measure the vertical force during a long-term period when using the drift correction program described in this study.  相似文献   

12.

Aim/Hypothesis

The etiology of plantar fasciitis (PF) has been related to several risk factors, but the magnitude of the plantar load is the most commonly described factor. Although PF is the third most-common injury in runners, only two studies have investigated this factor in runners, and their results are still inconclusive regarding the injury stage.

Objective

Analyze and compare the plantar loads and vertical loading rate during running of runners in the acute stage of PF to those in the chronic stage of the injury in relation to healthy runners.

Methods

Forty-five runners with unilateral PF (30 acute and 15 chronic) and 30 healthy control runners were evaluated while running at 12 km/h for 40 meters wearing standardized running shoes and Pedar-X insoles. The contact area and time, maximum force, and force-time integral over the rearfoot, midfoot, and forefoot were recorded and the loading rate (20–80% of the first vertical peak) was calculated. Groups were compared by ANOVAs (p<0.05).

Results

Maximum force and force-time integral over the rearfoot and the loading rate was higher in runners with PF (acute and chronic) compared with controls (p<0.01). Runners with PF in the acute stage showed lower loading rate and maximum force over the rearfoot compared to runners in the chronic stage (p<0.01).

Conclusion

Runners with PF showed different dynamic patterns of plantar loads during running over the rearfoot area depending on the injury stage (acute or chronic). In the acute stage of PF, runners presented lower loading rate and forces over the rearfoot, possibly due to dynamic mechanisms related to pain protection of the calcaneal area.  相似文献   

13.
The aim of the present study was to investigate the influence of reduced plantar sensation on pressure distribution patterns during gait of 40 healthy subjects (25.3+/-3.3 yr, 70.8+/-10.6 kg and 176.5+/-7.8 cm) with no history of sensory disorders. Plantar sensation in the subjects was reduced by using an ice immersion approach, and reduced sensitivity was tested with Semmes-Weinstein monofilaments. All subjects performed six trials of barefoot walking over a pressure distribution platform under normal as well as iced conditions. Plantar cutaneous sensation was significantly reduced after the cooling procedure (p<0.0001). Pressure distribution analysis showed substantially modified plantar pressure distribution patterns during the roll-over process (ROP) under iced conditions. Analysis of peak pressures revealed significant reductions under the toes and under the heel (p<0.001). The contact time and the relative impulse for the whole foot did not change significantly between the two conditions. For the different areas, a significant load shift from the heel and toes towards the central and lateral forefoot and the lateral midfoot was observed. The results indicate the strong influence of reduced afferent information of the sole of the foot on the ROP in walking.  相似文献   

14.
This study presented a three-pressure-sensor (3PS) system for monitoring ankle supination torque during sport motions. Five male subjects wore a pair of cloth sport shoes and performed 10 trials of walking, running, cutting, vertical jump-landing and stepping-down motions in a random sequence. A pair of pressure insoles (Novel Pedar model W, Germany) was inserted in the shoes for the measurement of plantar pressure at 100Hz. The ankle joint torque was calculated by a standard lower extremity inverse dynamic calculation procedure with the data obtained by a motion capture system (VICON, UK) and a force plate (AMTI, USA), and was presented in a supination/pronation plane with an oblique axis of rotation at the ankle joint. Stepwise linear regression analysis suggested that pressure data at three locations beneath the foot were essential for reconstructing the ankle supination torque. Another group of five male subjects participated in a validation test with the same procedure, but with the pressure insoles replaced by the 3PS system. Estimated ankle supination torque was calculated from the equation developed by the regression analysis. Results suggested that the correlation between the standard and estimated data was high (R=0.938). The overall root mean square error was 6.91Nm, which was about 6% of the peak values recorded in the five sport motions (113Nm). With the good estimation accuracy, tiny size and inexpensive cost, the 3PS system is readily available to be implanted in sport shoe for the estimation and monitoring of ankle supination torque during dynamic sport motions.  相似文献   

15.
Plantar pressures are typically measured using sensors of finite area, so the accuracy with which one can measure true maximum pressure is dependent on sensor size. Measurement accuracy has been modeled previously for one patient's metatarsals (Lord, 1997), but has not been modeled either for general subjects or for other parts of the foot. The purposes of this study were (i) to determine whether Lord's (1997) model is also valid for heel and hallux pressures, and (ii) to examine how sensor size relates to measurement accuracy in the context of four factors common to many measurement settings: pressure pulse size, foot positioning, pressure change quantification, and gross pressure redistribution. Lord's (1997) model was first generalized and was then validated using 10 healthy walking subjects, with relatively low RMSE values on the order of 20 kPa. Next, postural data were used to show that gross pressure redistributions can be accurately quantified (p<0.002), even with rather gross sensor sizes of 30 mm. Finally, numerical analyses revealed that the relation between sensor size and measurement accuracy is highly complex, with deep dependency on the measurement context. In particular, the critical sensor widths required to achieve 90% accuracy ranged from 1.7 mm to 17.4 mm amongst the presently investigated scenarios. Since measurement accuracy varies so extensively with so many factors, the current results cannot yield specific recommendations regarding spatial resolution. It is concluded simply that no particular spatial resolution can yield a constant measurement accuracy across common plantar pressure measurement tasks.  相似文献   

16.
Creep contributes to the fatigue behavior of bovine trabecular bone.   总被引:3,自引:0,他引:3  
Repetitive, low-intensity loading from normal daily activities can generate fatigue damage in trabecular bone, a potential cause of spontaneous fractures of the hip and spine. Finite element models of trabecular bone (Guo et al., 1994) suggest that both creep and slow crack growth contribute to fatigue failure. In an effort to characterize these damage mechanisms experimentally, we conducted fatigue and creep tests on 85 waisted specimens of trabecular bone obtained from 76 bovine proximal tibiae. All applied stresses were normalized by the previously measured specimen modulus. Fatigue tests were conducted at room temperature; creep tests were conducted at 4, 15, 25, 37, 45, and 53 degrees C in a custom-designed apparatus. The fatigue behavior was characterized by decreasing modulus and increasing hysteresis prior to failure. The hysteresis loops progressively displaced along the strain axis, indicating that creep was also involved in the fatigue process. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates. Strong and highly significant power-law relationships were found between cycles-to-failure, time-to-failure, steady-state creep rate, and the applied loads. Creep analyses of the fatigue hysteresis loops also generated strong and highly significant power law relationships for time-to-failure and steady-state creep rate. Lastly, the products of creep rate and time-to-failure were constant for both the fatigue and creep tests and were equal to the measured failure strains, suggesting that creep plays a fundamental role in the fatigue behavior of trabecular bone. Additional analysis of the fatigue strain data suggests that creep and slow crack growth are not separate processes that dominate at high and low loads, respectively, but are present throughout all stages of fatigue.  相似文献   

17.
An experimental crush injury to the sciatic nerve, with a crush force of 49.2 N (pressure p=1.98x10(8) Pa), was inflicted in 30 male rats (Wistar). A control group (sham), with the same number of rats, was also operated upon exactly as the experimental group but without the crush injury. We tested the sensory and motor recovery of the sciatic nerve with Hargreaves method, using an apparatus from Ugo Basile, Italy. Testing was continued for both legs of each rat, injured and uninjured, starting preoperatively (0 day), and then 1, 7, 14, 21, and 28 days postoperatively. The same experiment was run simultaneously with the sham group. The Plantar test showed recovery of the sensory and motor function of the sciatic nerve, though not complete recovery, by 28 days. An immunohistochemical experiment was run in parallel with the plantar test on L3-L6 segments of the spinal cord from where the sciatic nerve extends. We used antibodies for Myelin-associated glycoprotein (MAG), and gangliosides GD1a and GT1b on the aforesaid part of the spinal cord. The immunohistochemical methods showed changes in sensory and motor axons in the spinal cord segment L3-L6 which suggest correspondence with the results of the Plantar test, in terms of recovery of the sensory and motor function after injury of the sciatic nerve. The immunohistochemical results also show ipsilateral and contralateral changes following injury. Results of the plantar test are suggestive that the rat shows compensation for an injury in its contralateral leg.  相似文献   

18.
目的:分析双膝骨性关节炎(Osteoarthritis,OA)患者全膝关节置换(Total Knee Arthroplasty,TKA)手术前后足底压力分布变化。方法:选取2014年1月-2015年12月于西京医院就诊的25名双侧膝关节OA患者为研究对象,分别于术前、术后6个月两个时间点采用Footscan测量系统采集患者足底10个区域的压力数据,选择达峰值压力(Maximal Force,Max-F)、达峰值时间(Maximal Time,Max-T)作为主要参数进行统计分析。结果:双膝OA患者TKA术后与术前相比发现Max-F:重侧患肢足底分区第1足趾、第2-5足趾、第4、5跖骨头区减小;后足区增大;轻侧患肢足底分区前足、中足、后足均减小。Max-T:重侧足底分区第2-5足趾区、第一跖骨头区、中足、后足区增大;轻侧足底分区第2-5足趾区、第5跖骨头区减小。以上结果均存在显著性差异(P0.05)。结论:通过足底压力步态系统分析双膝OA患者手术前后的足底压力数据,可以更加科学、客观、量化的评价TKA手术疗效。  相似文献   

19.
Normal human subjects (n = 7) breathing 21% O2 (normoxia), 13% O2 (hypoxia), or 100% O2 (hyperoxia) performed repeated maximal inspiratory maneuvers (inspiratory duration = 1.5 s, total breath duration = 3.5 s) on an "isoflow" system, which delivered a constant mouth flow (1.25 or 1 l/s) while maintaining normocapnia (5.5% end-tidal CO2). Respective mean arterial O2 saturation values (ear lobe oximetry) were 98 +/- 1, 91 +/- 4 (P less than or equal to 0.01), and 99 +/- 1% (NS). Maximal mouth pressure (Pm) was measured during inspirations at rest and during a 10-min fatigue trial, and the Pm measurements obtained during the fatigue trials were fit to an exponential equation. The parameters of the equation included the time constant (tau), which describes the rate of decay of Pm from the initial pressure (Pi) to the asymptote, or "sustainable" pressure (Ps). The mean fraction of Pm remaining at the end of the fatigue trials (Ps/Pi) was 63 +/- 5%. No significant differences in Pi, Ps, or tau were observed between O2 treatments. This suggests that fatigue of the inspiratory muscles in normal humans occurs by a mechanism that is insensitive to changes in blood O2 content that occur during inspiration of O2 in the range of 13-100%.  相似文献   

20.
Plantar shear stresses are believed to play a major role in diabetic ulceration. Due to the lack of commercial devices that can measure plantar shear distribution, a number of mathematical models have been developed to predict plantar frictional forces. This study assessed the accuracy of these models using a custom-built platform capable of measuring plantar stresses simultaneously. A total of 48 (38 healthy and 10 diabetic) human subjects (75+/-20 kg, 41+/-20 years, 32 males, 16 females) were recruited in the study. Plantar force data were collected for 2s at 50 Hz. Two models (M1 and M2) reported in the literature by different groups were used to predict local shear stresses. Root mean squared errors (RMSE) were calculated to compare model data with the actual data, focusing on three parameters: location, magnitude and timing of peak shear components. RMSE values of estimated peak AP and ML shear locations were 3.1 and 2.2 cm for M1 and 3.1 and 2.1cm for M2, respectively. Magnitude RMS error values for M1 were found to be 86.6 kPa in AP shear and 38.5 kPa in ML shear, whereas these values were determined to be 97.8 and 63.5 kPa, respectively by M2. Time to peak shear RMSE values averaged 17.2% in terms of the gait duration. In conclusion, distribution of plantar shear should be measured rather than predicted, particularly if one is interested in the magnitudes of shear components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号