首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of side chain modification on the organic anion exchanger in the renal brush-border membrane was examined to identify what amino acid residues constitute the substrate binding site. One histidyl-specific reagent, diethyl pyrocarbonate (DEPC), and 2 arginyl-specific reagents, phenylglyoxal and 2,3-butanedione, were tested for their effect on the specifically mediated transport of p-amino[3H]hippurate (PAH), a prototypic organic anion. The specifically mediated transport refers to the difference in the uptake of [3H]PAH in the absence and presence of a known competitive inhibitor, probenecid, and was examined in brush-border membrane vesicles isolated from the outer cortex of canine kidneys. The experiments were performed utilizing a rapid filtration assay. DEPC, phenylglyoxal, and 2,3-butanedione inactivated the specifically mediated PAH transport, i.e. probenecid inhibitable transport with IC50 values of 160, 710, and 1780 microM, respectively. The rates of PAH inactivation by DEPC and phenylglyoxal were suggestive of multiple pseudo first-order reaction kinetics and were consistent with a reaction mechanism whereby more than 1 arginyl or histidyl residue is inactivated. Furthermore, PAH (5 mM) did not affect the rate of phenylglyoxal inactivation. In contrast, PAH (5 mM) affected the rate of DEPC inactivation. The modification by DEPC was specific for histidyl residues since transport could be restored by treatment with hydroxylamine. The results demonstrate that histidyl and arginyl residues are essential for organic anion transport in brush-border membrane vesicles. We conclude that the histidyl residue constitutes the cationic binding site for the anionic substrate, whereas the arginyl residue(s) serves to guide the substrate to or away from the histidyl site.  相似文献   

2.
1. Catecholamines are transported into chromaffin granules via a carrier-mediated, active-transport process which is inhibited by micromolar concentrations of the sulfhydryl reagent, N-ethylmaleimide (NEM). Reserpine is a very potent, competitive inhibitor of the catecholamine transporter and can be used to investigate the characteristics of the catecholamine transporter. 2. The purpose of this study was to determine whether [3H]reserpine binding to the catecholamine transporter present in chromaffin granule membranes isolated from bovine adrenal glands was also inhibited by NEM and, if so, whether this was a direct or an indirect effect of NEM on the catecholamine transporter. 3. Both [3H]norepinephrine transport into and [3H]reserpine binding to the chromaffin granule ghosts isolated from bovine adrenal glands are inhibited by NEM, with IC50 values of 0.63 +/- 0.02 and 2.8 +/- 0.66 microM, respectively. 4. Mg and ATP protected both the [3H]norepinephrine transport into the ghosts and the [3H]reserpine binding to the transporter from inhibition by NEM, shifting the IC50 values to 260 +/- 43 and 120 +/- 29 microM, respectively. 5. NEM inhibition of the catecholamine transport and reserpine binding appears to be due to an action on the proton translocator associated with the Mg ATPase enzyme rather than a direct action on the catecholamine transporter since (a) the concentration of NEM required to inhibit formation of a membrane potential is similar to that required to inhibit [3H]norepinephrine transport into and [3H]reserpine binding to the ghosts and (b) Mg and ATP protected the proton translocation and [3H]norepinephrine transport into the ghosts, and [3H]reserpine binding to the ghosts, from inhibition by NEM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Sealed reticulocyte ghosts were treated with reagents that modify a variety of amino acid residues. Only ninhydrin and phenylglyoxal, both modifiers of arginyl residues, produced inhibition of the initial rate of 59Fe2+ uptake. The inhibition (i) was dependent on the concentration of ninhydrin or phenylglyoxal, (ii) increased from pH 7 to 9, a feature of the modification of arginine by ninhydrin or phenylglyoxal, and (iii) was blocked when Fe2+ was present during the modification step. A23187, an effective membrane Fe2+ transporter, diminished the inhibitory effect of ninhydrin and phenylglyoxal, indicative that the transport of iron through the membrane, and not a secondary process, was selectively inhibited. We conclude that the iron transporter from the plasma membrane of erythroid cells has one or more arginyl residues in a segment accessible to ninhydrin or phenylglyoxal, and that this residue is involved in the transmembrane transport of iron.This work was supported by grant 1080-91 from FONDECYT, Chile.  相似文献   

4.
The sarcoplasmic reticulum (SR) of skeletal muscle contains a Pi transporter which transports Pi into the lumen of the SR, increasing the level of accumulation of Ca2+ by SR by forming insoluble salts with Ca2+. Phosphonocarboxylic acids inhibit the transport of Pi by the transporter, phosphonoformic acid itself being transported into the SR increasing the level of accumulation of Ca2+. Phenylphosphonic acid also inhibits Pi transport, distinguishing the Pi transporter of SR from the Na+/Pi transporter of brush-border membranes. Oxalate transport is also inhibited by the phosphono-carboxylic acids, consistent with the suggestion that oxalate and phosphate are carried on the same transporter. The effects of maleate are, however, not inhibited, suggesting a separate carrier for the dicarboxylic acids. Acetic anhydride and phenylglyoxal inhibit the transporter, Pi providing protection against the effects of acetic anhydride, suggesting the presence of a lysine residue at the Pi binding site. ATP provides protection against the effects of acetic anhydride and phenylglyoxal, suggesting the presence of an ATP binding site on the transporter.  相似文献   

5.
Nitrate uptake in right-side out plasma membrane vesicles isolated from cucumber roots was characterized. Nitrate uptake into vesicles was driven by an artificially imposed pH gradient. The uptake was strongly inhibited by phenylglyoxal, an arginyl residue modificator. Only a slight repression of NO 3 transport in vesicles was observed in the presence of NEM, a thiol group reagent. pCMBS, an other thiol reagent and DEPC, an effector of histidine residue, had no effect on the nitrate transport in plasma membranes. ATP-driven proton transport in vesicles was not significantly affected in the presence of both, phenylglyoxal and DEPC, whereas pCMBS and NEM abolished it almost completely. The possible role of the particular amino acids residues in the active nitrate transport is discussed. NO 3 uptake into vesicles isolated from both, nitrate-induced and nitrate-depleted plant material was higher than that observed in the vesicles obtained from uninduced plants. Thus, isolated vesicles reflect the well-known in vivo response of intact plants on the exogenous nitrogen regime.  相似文献   

6.
N,N'-Dicyclohexylcarbodiimide (DCC) has been previously shown to inhibit the amine transporter from chromaffin granules [Gasnier, B., Scherman, D., & Henry, J.P. (1985) Biochemistry 24, 3660-3667]. A study of the mechanism of inhibition is presented together with the demonstration of covalent modification of the protein. DCC inhibits binding of R1 (reserpine) and R2 (tetrabenazine) types of ligands to the transporter as well as transport. Ligands of the R2 type, but not those of the R1 type, protect against inhibition of all the reactions by DCC, i.e., accumulation of serotonin, binding if reserpine (R1 ligand), and binding of ketanserine (R2 ligand). The ability of a given R2 ligand to protect the transporter correlates well with its binding constant. Water-soluble carbodiimides, such as 1-ethyl-3-[3-(diethylamino)propyl]carbodiimide (EDC), do not have any effect on the catalytic activity of the transporter. A fluorescent hydrophobic analogue of DCC, N-cyclohexyl-N'-[4-(dimethylamino)-alpha-naphthyl]carbodiimide (NCD-4), inhibits at about the same concentration range as DCC. [14C]DCC labels several polypeptides in the chromaffin granule membranes. Labeling of a polypeptide with an apparent Mr of 80K is inhibited in the presence of R2 ligands. The labeled polypeptide copurifies with the recently identified and isolated transporter [Stern-Bach, Y., Greenberg-Ofrath, N., Flechner, I., & Schuldiner, S. (1990) J. Biol. Chem. 256, 3961-3966].  相似文献   

7.
Treatment of either crude or purified preparations of the gamma-aminobutyrate (GABA)/benzodiazepine receptor complex with arginine-specific reagents resulted in a time- and concentration-dependent loss of [3H]muscimol binding activity. Following exposure to either 2,3-butanedione or phenylglyoxal (less than or equal to 20 mM), [3H]muscimol binding was inhibited by up to 80%. [3H]Flunitrazepam binding was much less sensitive to the effects of the reagents. Scatchard analysis of the binding data indicated that treatment with butanedione resulted in a loss of [3H]muscimol binding sites with little effect on binding affinity. Considerable protection against inactivation was provided by arginine and by the endogenous receptor ligand, GABA. These results indicate that arginine residues play a critical role in maintaining the GABA receptor in a conformation capable of ligand binding, possibly by participating in the binding site through interaction with the carboxylate moiety of GABA.  相似文献   

8.
Intracellular ATP inhibits human erythrocyte net sugar transport by binding cooperatively to the glucose transport protein (GluT1). ATP binding produces altered transporter affinity for substrate and promotes substrate occlusion within a post-translocation vestibule formed by GluT1 cytosolic domains. The accompanying paper (Cloherty, E. K., Levine, K. B., Graybill, C., and Carruthers, A. (2002) Biochemistry 41, 12639-12651) demonstrates that reduced intracellular pH promotes high-affinity ATP binding to GluT1 but inhibits ATP-modulation of GluT1-mediated sugar transport. The present study explores the role of GluT1 residues 326-343 (a proposed GluT1 ATP-binding site subdomain) in GluT1 ATP binding by using alanine scanning mutagenesis. Cos-7 and HEK cells were transfected with a cDNA encoding full-length human GluT1 terminating in a carboxyl-terminal hemagglutinin (HA)-His6 epitope. The transporter (GluT1.HA.H6) is expressed at the surface of both cell-types and is catalytically active. In HEK cells, both parental GluT1- and GluT1.HA.H6-mediated sugar transport are acutely sensitive to cellular metabolic inhibition. Isolated, detergent-solubilized GluT1.HA.H6 is photolabeled by [gamma-32P]-azidoATP in an ATP-protectable manner. Alanine substitution of E329 or G332/R333/R334 enhances GluT1.HA.H6 [gamma-32P]azidoATP photoincorporation but blocks acute modulation of net sugar transport by cellular metabolic inhibition. These actions resemble those of reduced pH on ATP binding to and modulation of red cell GluT1. It is proposed that cooperative nucleotide binding to GluT1 and nucleotide modulation of GluT1-mediated sugar transport are regulated by a proton-sensitive saltbridge (Glu329-Arg333/334).  相似文献   

9.
The purified F0 part of the ATP synthase complex from Escherichia coli was incorporated into liposomes and chemically modified by various reagents. The modified F0-liposomes were assayed for H+ uptake and, after reconstitution with F1, for total and dicyclohexylcarbodiimide-sensitive ATPase activity. The water-soluble carbodiimide, 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide methiodide, (1.2 mM), inhibited H+ uptake to a great extent. Binding of F1 was almost unaffected, but the hydrolysis of ATP was uncoupled from H+ transport. This is reflected by the inhibition of dicyclohexylcarbodiimide-sensitive ATPase activity. Woodward's reagent K, N-ethyl-5-phenylisoxazolium-3'-sulfonate, inhibited both H+ uptake and total ATPase activity. Modification of arginine residues by phenylglyoxal (20 mM) was followed by inhibition of the F1 binding activity by 80% of the control. H+ translocation was reduced to 70%. Diethylpyrocarbonate (3 mM) exhibited a strong inhibiting effect on H+ uptake but not on F1 binding. Modification of tyrosine (by tetranitromethane) as well as lysine residues (by succinic anhydride) did not affect F0 functions. From the data presented we conclude that carboxyl-groups, different from the dicyclohexylcarbodiimide-binding site, are involved in H+ translocation through F0 and, in part, in the functional binding of F1. Furthermore, for the latter function, also arginine residues seem to be important. The role of histidine residues remains unclear at present.  相似文献   

10.
The substrate-binding sites in membrane transporters are alternately accessible from either side of the membrane, but the molecular basis of how this alternate opening of internal and external gates is achieved is largely unknown. Here we present data indicating that, in the neuronal electrogenic sodium- and potassium-coupled glutamate transporter EAAC-1, the substrate-binding site and one of the gates, or a residue controlling the gating process, are in close physical proximity. Arginine 445, located only two residues away from a residue implicated in glutamate binding (Bendahan, A., Armon, A., Madani, N., Kavanaugh, M. P., and Kanner, B. I. (2000) J. Biol. Chem. 275, 37436-37442), has been mutated to serine (R445S). Upon expression in oocytes, measurements of l-[(3)H]-glutamate transport under voltage clamp reveal that the charge/flux ratio for l-glutamate at -60 mV is approximately 30-fold higher than that of the wild type. Also, with d-aspartate, R445S exhibits an approximately 15-fold increase in this ratio. In contrast to the wild type, the reversal potential of the substrate-dependent currents in R445S shifts to more negative potentials when either the external sodium or potassium concentration is decreased. These findings indicate that these two cations are the main current carriers in the R445S mutant. Introduction of a methionine or a glutamine, but not a lysine, at position 445 gives rise to a phenotype similar to R445S. Therefore, it seems that the elimination of a positive charge in the vicinity of the substrate-binding site converts the transporter into a glutamate-gated cation-conducting pathway.  相似文献   

11.
Procedures have been developed for the purification of a nearly homogeneous, highly active phosphate transport system from rat liver mitochondria in either a two-subunit (alpha, beta) or a single subunit (beta) form. Significantly, both forms display a similar high magnitude N-ethylmaleimide (NEM)-sensitive Pi/Pi exchange activity upon incorporation into phospholipid vesicles. The transport system is extracted from hypotonically shocked mitoplasts with Triton X-114 and purified in the presence of cardiolipin by sequential chromatography on hydroxylapatite, DEAE-Sepharose CL-6B, and Affi-Gel 501. Depending on the conditions used to elute the transporter from Affi-Gel 501, preparations are obtained which, when analyzed by high resolution sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis, consist of either a single 33-kDa protein (beta) or a 33-kDa (beta) plus a 35-kDa (alpha) component. In preparations yielding the latter result, both bands display a nearly equivalent Coomassie staining intensity. Furthermore, after alkylation with NEM, the two protein bands co-migrate. Fluorography indicates that the coalesced band contains [3H]NEM. Upon reconstitution of the purified Pi carrier into liposomes, direct measurement of both the initial transport rate and the amount of protein that actually incorporates into the phospholipid vesicles yields a specific transport activity of 22.6 mumol/min/mg of protein. The exchange is characterized by a first order rate constant of 0.85 min-1, a t1/2 of 49 s, and is inhibited by sulfhydryl reagents (i.e., NEM, p-chloromercuribenzoate, and mersalyl). It is also substantially inhibited by diethyl pyrocarbonate, N-acetylimidazole, phenylglyoxal, and 5-dimethylaminoaphthalene-1-sulfonyl chloride. In addition to providing a simple, rapid method for preparing the NEM-sensitive phosphate carrier in nearly homogeneous form, these studies provide new information about the catalytically active species of the carrier, its kinetic properties, and its inhibitor sensitivities.  相似文献   

12.
System A and N amino acid transporters are key effectors of movement of amino acids across the plasma membrane of mammalian cells. These Na+-dependent transporters of the SLC38 gene family are highly sensitive to changes in pH within the physiological range, with transport markedly depressed at pH 7.0. We have investigated the possible role of histidine residues in the transporter proteins in determining this pH-sensitivity. The histidine-modifying agent DEPC (diethyl pyrocarbonate) markedly reduces the pH-sensitivity of SNAT2 and SNAT5 transporters (representative isoforms of System A and N respectively, overexpressed in Xenopus oocytes) in a concentration-dependent manner but does not completely inactivate transport activity. These effects of DEPC were reversed by hydroxylamine and partially blocked in the presence of excess amino acid substrate. DEPC treatment also blocked a reduction in apparent affinity for Na+ (K0.5Na+) of the SNAT2 transporter at low external pH. Mutation of the highly conserved C-terminal histidine residue to alanine in either SNAT2 (H504A) or SNAT5 (H471A) produced a transport phenotype exhibiting reduced, DEPC-resistant pH-sensitivity with no change in K0.5Na+ at low external pH. We suggest that the pH-sensitivity of these structurally related transporters results at least partly from a common allosteric mechanism influencing Na+ binding, which involves an H+-modifier site associated with C-terminal histidine residues.  相似文献   

13.
Mice were immunized with human red cell glucose transporter for production of monoclonal antibodies. Four peptides were synthesized that correspond to relatively hydrophilic segments of the human HepG2 glucose transporter (Mueckler, M., Caruso, C., Baldwin, S.A., Panico, M., Blench, I., Morris, H.R., Allard, W. J., Lienhard, G.E., and Lodish, H.F. (1985) Science 229, 941-945), including a C-terminal segment. After identification of hybridomas that were positive for the red cell glucose transporter, enzyme-linked immunosorbent assays were done with the synthetic peptides in solution to detect peptide-binding monoclonals. The very hydrophilic C-terminal peptide 478-492 (P2), but no other peptide, gave strong and selective inhibition of antibody binding to the glucose transporter. Two C-terminal-specific monoclonal antibodies were selected. The binding of these two antibodies to immobilized inside-out vesicles of human red cell membranes could be inhibited with the peptide P2. The antibodies did not react with right-side-out vesicles. The binding of these C-terminal-specific antibodies to the glucose transporter, to immobilized vesicles, and to the peptide P2 was enhanced by the presence of the peptide 218-232 (P1), although the peptide P1 alone showed no reaction with these antibodies. This suggests that the C terminus and the segment 218-232 of the red cell glucose transporter are exposed at the cytoplasmic face of the membrane and interact in the transporter. The C-terminal-specific monoclonal antibodies reacted strongly in Western blotting with the human red cell glucose transporter.  相似文献   

14.
The ram2 and cal1 genes encode the alpha and beta subunits of yeast geranylgeranyl protein transferase type I (GGPT-I), respectively. Arginine 166 of the beta subunit was changed to isoleucine (betaR166I), histidine 216 to aspartic acid (betaH216D), and asparagine 282 to alanine (betaN282A) by sequential PCR using mutagenic primers. The mutants were expressed under the same conditions as the wild-type and were assayed for GGPT-I activity. Wild-type yeast GGPT-I, alphaH145D, alphaD140N, betaR166I, betaH216D and betaN282A mutant GGPT-Is were partially purified by ammonium sulfate fractionation followed by a Q-Sepharose column. Characterization studies were performed using the active fraction of the Q-Sepharose column. In the chemical modification reactions, the catalytic activity of purified enzyme decreased in proportion to the concentration of modifying reagents, such as phenylglyoxal and diethyl pyrocarbonate (DEPC). Geranylgeranyl pyrophosphate (GGPP) protected the enzyme activity from the modification with phenylglyoxal. The measurement of GGPP binding to wild-type and five mutant GGPT-Is was performed by a gel-filtration assay. The binding of GGPP to the betaR166I mutant was low and the Km value for GGPP in the betaR166I mutant increased about 29-fold. Therefore, the results suggest a role for this arginine residue that directly influences the GGPP binding. The activity of the DEPC-modified GGPT-I was inhibited by 80% at 5 mM DEPC. The differential absorption at 242 nm may suggest that at this concentration the modified histidine residues were 1.5 mol per GGPT-I. The protein substrate, glutathione S-transferase fused undecapeptide (GST-CAIL) protected the enzyme from inactivation by DEPC, and the Km value for GST-CAIL in the betaH216D mutant increased about 12-fold. The trypsin digestion of [14C]DEPC-modified enzyme yielded a single radioactive peptide. As a result of the sequence of this radioactive peptide, the histidine 216 residue was assumed to be an essential part of binding of peptide substrate.  相似文献   

15.
Tao Z  Grewer C 《Biochemistry》2005,44(9):3466-3476
Transmembrane glutamate transport by the excitatory amino acid carrier (EAAC1) is coupled to the cotransport of three Na(+) ions and one proton. Previously, we suggested that the mechanism of H(+) cotransport involves protonation of the conserved glutamate residue E373. However, it was also speculated that the cotransported proton is shared in a H(+)-binding network, possibly involving the conserved histidine 295 in the sixth transmembrane domain of EAAC1. Here, we used site-directed mutagenesis together with pre-steady-state electrophysiological analysis of the mutant transporters to test the protonation state of H295 and to determine its involvement in proton transport by EAAC1. Our results show that replacement of H295 with glutamine, an amino acid residue that cannot be protonated, generates a fully functional transporter with transport kinetics that are close to those of the wild-type EAAC1. In contrast, replacement with lysine results in a transporter in which substrate binding and translocation are dramatically inhibited. Furthermore, it is demonstrated that the effect of the histidine 295 to lysine mutation on the glutamate affinity is caused by its positive charge, since wild-type-like affinity can be restored by changing the extracellular pH to 10.0, thus partially deprotonating H295K. Together, these results suggest that histidine 295 is not protonated in EAAC1 at physiological pH and, thus, does not contribute to H(+) cotransport. This conclusion is supported by data from H295C-E373C double mutant transporters which demonstrate that these residues cannot be linked by oxidation, indicating that H295 and E373 are not close in space and do not form a proton binding network. A kinetic scheme is used to quantify the results, which includes binding of the cotransported proton to E373 and binding of a modulatory, nontransported proton to the amino acid side chain in position 295.  相似文献   

16.
The functional expression of membrane transport proteins that are responsible for exchanging sodium and protons is a ubiquitous phenomenon. Among vertebrates the Na+/H+ antiporter occurs in plasma membranes of polarized epithelial cells and non-polarized cells such as red blood cells, muscle cells, and neurons, and in each cell type the transporter exchanges one sodium for one hydrogen ion, is inhibited by amiloride, and regulates intracellular pH and sodium concentration within tight limitations. In polarized epithelial cells this transporter occurs in two isoforms, each of which is restricted to either the brush border or basolateral cell membrane, and perform somewhat different tasks in the two locations. In prokaryotic cells, sodium/proton exchange occurs by an electrogenic 1Na+/2H+ antiporter that is coupled to a primary active proton pump and together these two proteins are capable of tightly regulating the intracellular concentrations of these cations in cells that may occur in environments of 4 M NaCl or pH 10-12. Invertebrate epithelial cells from the gills, gut, and kidney also exhibit electrogenic sodium/proton exchange, but in this instance the transport stoichiometry is 2Na+/1H+. As with vertebrate electroneutral Na+/H+ exchange, the invertebrate transporter is inhibited by amiloride, but because of the occurrence of two external monovalent cation binding sites, divalent cations are able to replace external sodium and also be transported by this system. As a result, both calcium and divalent heavy metals, such as zinc and cadmium, are transported across epithelial brush border membranes in these animals and subsequently undergo a variety of biological activities once accumulated within these cells. Absorbed epithelial calcium in the crustacean hepatopancreas may participate in organismic calcium balance during the molt cycle and accumulated heavy metals may undergo complexation reactions with intracellular anions as a detoxification mechanism. Therefore, while the basic process of sodium/proton exchange may occur in invertebrate cells, the presence of the electrogenic 2Na+/1H+ antiporter in these cells allows them to perform a wide array of functions without the need to develop and express additional specialized transport proteins. J. Exp. Zool. 289:232-244, 2001.  相似文献   

17.
The histidine-selective reagents diethylpyrocarbonate (DEPC) and dimethylpyrocarbonate were used to study active site residues of phosphoenolpyruvate carboxykinase. Both reagents show pseudo first-order inhibition of enzyme activity at 22 +/- 1 degree C with calculated second-order rate constants of 2.8 and 4.6 M-1 s-1, respectively. The inhibition appears partially reversible. Substrates affect the rate of inhibition: KHCO3 enhances the rate, Mn2+ has little effect, and phosphoenolpyruvate decreases the rate. The best protection is obtained by IDP or IDP and Mn2+. The kinetic studies show that modification of histidine is specific and leads to loss of enzymatic activity. Two histidines per enzyme are modified by DEPC, as measured by an absorption change at 240 nm, in the absence of substrate, leading to loss in activity. One histidine per molecule is modified in the presence of KHCO3, giving inactivation. Cysteine and lysine residues are not affected. A study of the inhibition rate constant as a function of pH gives a pKa of 6.7. Enzyme modified by DEPC in the absence of substrate (1% remaining activity) shows no binding of ITP or of phosphoenolpyruvate to the enzyme.Mn2+ complex as studied by proton relaxation rates. When enzyme is modified in the presence of KHCO3 (44% remaining activity), ITP and KHCO3 bind to the enzyme.Mn2+ complex similarly to the binding to native enzyme. Phosphoenolpyruvate binding to modified enzyme.Mn results in an enhancement of proton relaxation rates rather than the decrease observed with native enzyme.Mn. The CD spectra of histidine-modified enzyme show a decrease in alpha-helical and random structure with an increase in anti-parallel beta-sheet structure compared to native enzyme. These results show that avian phosphoenolpyruvate carboxykinase has 2 histidine residues which are reactive with DEPC and dimethylpyrocarbonate, and one of the 15 histidine residues in the protein is at or near the phosphoenolpyruvate binding site and is involved in catalysis.  相似文献   

18.
Vesicular glutamate transporter is present in neuronal synaptic vesicles and endocrine synaptic-like microvesicles and is responsible for vesicular storage of L-glutamate. A brain-specific Na(+)-dependent inorganic phosphate transporter (BNPI) functions as a vesicular glutamate transporter in synaptic vesicles, and the expression of this BNPI defines the glutamatergic phenotype in the central nervous system (Bellocchio, E. E., Reimer, R. J., Fremeau, R. T., Jr., and Edwards, R. H. (2000) Science 289, 957-960; Takamori, S., Rhee, J. S., Rosenmund, C., and Jahn, R. (2000) Nature 407, 189-194). However, since not all glutamatergic neurons contain BNPI, an additional transporter(s) responsible for vesicular glutamate uptake has been postulated. Here we report that differentiation-associated Na(+)-dependent inorganic phosphate cotransporter (DNPI), an isoform of BNPI (Aihara, Y., Mashima, H., Onda, H., Hisano, S., Kasuya, H., Hori, T., Yamada, S., Tomura, H., Yamada, Y., Inoue, I., Kojima, I., and Takeda, J. (2000) J. Neurochem. 74, 2622-2625), also transports L-glutamate at the expense of an electrochemical gradient of protons established by the vacuolar proton pump when expressed in COS7 cells. Molecular, biological, and immunohistochemical studies have indicated that besides its presence in neuronal cells DNPI is preferentially expressed in mammalian pinealocytes, alphaTC6 cells, clonal pancreatic alpha cells, and alpha cells of Langerhans islets, these cells being proven to secrete L-glutamate through Ca(2+)-dependent regulated exocytosis followed by its vesicular storage. Pancreatic polypeptide-secreting F cells of Langerhans islets also expressed DNPI. These results constitute evidence that DNPI functions as another vesicular transporter in glutamatergic endocrine cells as well as in neurons.  相似文献   

19.
HlyC is an internal protein acyltransferase that activates hemolysin, a toxic protein produced by pathogenic Escherichia coli. Acyl-acyl carrier protein (ACP) is the essential acyl donor. Separately subcloned, expressed, and purified prohemolysin A (proHlyA), HlyC, and [1-14C]myristoyl-ACP have been used to study the conversion of proHlyA to HlyA [Trent, M. S., Worsham, L. M., and Ernst-Fonberg, M. L. (1998) Biochemistry 37, 4644-4655]. HlyC and hemolysin belong to a family of at least 13 toxins produced by Gram-negative bacteria. The homologous acyltransferases of the family show a number of conserved residues that are possible candidates for participation in acyl transfer. Specific chemical reagents and site-directed mutagenesis showed that neither the single conserved cysteine nor the three conserved serine residues were required for enzyme activity. Treatment with the reversible histidine-modifying diethyl pyrocarbonate (DEPC) inhibited acyltransferase activity, and acyltransferase activity was restored following hydroxylamine treatment. The substrate myristoyl-ACP protected HlyC from DEPC inhibition. These findings and spectral absorbance changes suggested that histidine, particularly a histidine proximal to the substrate binding site, was essential for enzyme activity. Site-directed mutageneses of the single conserved histidine residue, His23, to alanine, cysteine, or serine resulted in each instance in complete inactivation of the enzyme.  相似文献   

20.
We have characterized the reaction of arginine-specific reagents with the phosphate and glucose carriers of the kidney brush-border membrane. The inhibition of phosphate and glucose transport by phenylglyoxal follows pseudo-first-order kinetics. The rate of inactivation of phosphate transport by 50 mM phenylglyoxal was about 3-fold higher than that for glucose transport (kapp was 0.052 s-1 for the uptake of phosphate and 0.019 s-1 for the uptake of glucose). The order of the reaction, n, with respect to phenylglyoxal was 1.25 and 1.31 for the inactivation of phosphate and glucose transport, respectively. The inactivation of phosphate flux by p-hydroxyphenylglyoxal also follows pseudo-first-order kinetics, but the inhibition rate (kapp = 0.0012 s-1) was slower than with phenylglyoxal. The inactivation increased with the alkalinity of the preincubation medium for both phosphate and glucose fluxes and was maximal at pH 9.0. The inactivation of phosphate flux by phenylglyoxal depends upon the presence of an alkaline intravesicular pH. Extravesicular pH does not affect the reaction. Phenylglyoxal does not interfere with the recycling of the protonated carrier since phosphate uptake is inhibited independently of the pH used for transport measurements. Moreover, phenylglyoxal completely abolished trans stimulation by phosphate. Trans sodium inhibited phosphate uptake and abolished the pH profile of phosphate uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号