首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jasmonic acid altered the accumulation of major anthocyanins in Vitis vinifera cell culture. Peonidin 3-glucoside content at day three was increased from 0.3 to 1.7 mg g–1 dry cell wt while other major anthocyanins were increased by smaller increments. By day 14, the content of methylated and acylated anthocyanins (peonidin 3-p-coumaroylglucoside and malvidin 3-p-coumaroylglucoside) was 6.3 mg g–1 DCW, in response to treatment with jasmonic acid, and comprising 45% (w/w) of total anthocyanins. In comparison, the untreated control culture contained 1.2 mg g–1 DCW which made up 32% (w/w) of total anthocyanins. Light further enhanced anthocyanin accumulation induced by jasmonic acid elicitation. The content of peonidin 3-glucoside at day 3 was 6.6 mg g–1 DCW, 22-fold higher than control cultures while the content in response to light irradiation alone was 0.6 mg g–1 DCW. When a highly pigmented cell line was elicited with jasmonic acid total anthocyanins increased from 9.2 to 20.7 mg g–1 DCW, but there was no change in the anthocyanin composition.  相似文献   

2.
Process strategies for production of recombinant rhamnulose 1-phosphate aldolase (RhuA) in Escherichia coli were found to have an important impact on downstream processing when preparing the enzyme for its use as immobilized biocatalyst. First, a continuous inducer feed was implemented in substrate limited fed-batch cultures to overexpress RhuA with a hexa histidine-tag (6xHis-tag) at its N-terminus. The final specific RhuA level was 180 mg g−1 DCW, but the final specific enzyme activity (1.7 AU mg−1 RhuA) was considerably lower than expected. Only 55% of immobilization yield was achieved when immobilized metal affinity chromatography (IMAC) was used to purify and immobilize RhuA from cellular lysate in a single step. Western blot analyses showed that only 20% of overexpressed RhuA kept the whole 6xHis-tag at the end of the culture due to partial proteolysis. Two different growth strategies improved protein quality and immobilization yield:
(i) Temperature reduction to 28 °C in substrate limited operation decreased proteolysis and allowed higher specific activities, 210 mg g−1 DCW. The enzyme activity increased to 4 AU mg−1 RhuA and purification-immobilization yield to 93%.
(ii) A novel fed-batch operational procedure, working at high glucose concentration was implemented. High aldolase levels, 233 mg g−1 DCW, were reached at the end of the culture. The final enzyme activity was also higher than 4 AU mg−1 RhuA, and 95% of immobilization yield was achieved.
For both cases, Western blot analyses showed that 80–100% of overexpressed RhuA kept the whole 6xHis-tag at the end of the culture, confirming that recombinant protein quality had been improved.  相似文献   

3.
S-Adenosyl-l-methionine (AdoMet) was produced by a mutant strain Kluyveromyces lactis AM-65 grown on whey. A full factorial design method of three factors – (NH4)2SO4 (factor x 1), corn steep liquor (factor x 2) and l-methionine (factor x 3) on three levels – was used to determine the optimal medium conditions for the production of AdoMet. A time course shake-flask experiment in optimal whey medium (x 1=3.1 g l–1, x 2=12.7 g l–1, x 3=4.6 g l–1) was also carried out and the results confirmed the results of the factorial design and subsequent quadratic modelling and optimization of AdoMet production which reached 90 mg g–1 cell dry wt.  相似文献   

4.
Human α1-antitrypsin (AAT) was produced in the recombinant yeast Saccharomyces cerevisiae ATCC 20699 grown in batch and fed-batch culture. The final biomass concentration and antitrypsin concentration attained were 55 g·L−1 and 1.23 g·L−1, respectively, in the fed-batch. The maximum productivities of biomass and antitrypsin were 1.6 and > 0.04 g L−1h−1, respectively, or substantially greater than the highest productivity values reported in the past. For recovering the antitrypsin, the cell slurry was concentrated 4-fold (231 g·L−1 biomass, 122 min of processing) by cross-flow microfiltration and the cells were disrupted by bead milling (3 passes of 3 min total retention time). The cell homogenate was treated with aluminum chloride or PBS (pH 7) to aid separation of the cell debris by flocculation and sedimentation. The clarified cell homogenate was subjected to ammonium sulfate fractionation to precipitate the recombinant antitrypsin. The AAT precipitated at 45–75% saturation of ammonium sulfate, depending on the age of the homogenate. The crude AAT in the homogenate degraded at room temperature (25°C), with a zero order deactivation rate of 1.815 × 10−3 ± 3.43 × 10−4 g AAT L−1h−1.  相似文献   

5.
(R)-Phenylacetylcarbinol (PAC), a pharmaceutical precursor, was produced from benzaldehyde and pyruvate by pyruvate decarboxylase (PDC) of Candida utilis in an aqueous/organic two-phase emulsion reactor. When the partially purified enzyme in this previously established in vitro process was replaced with C. utilis cells and the temperature was increased from 4 to 21 °C, a screen of several 1-alcohols (C4–C9) confirmed the suitability of 1-octanol as the organic phase. Benzyl alcohol, the major by-product in the commercial in vivo conversion of benzaldehyde and sugar to PAC by Saccharomyces cerevisiae, was not formed. With a phase volume ratio of 1:1 and 5.6 g C. utilis l−1 (PDC activity 2.5 U ml−1), PAC levels of 103 g l−1 in the octanol phase and 12.8 g l−1 in the aqueous phase were produced in 15 h at 21 °C. In comparison to our previously published process with partially purified PDC in an aqueous/octanol emulsion at 4 °C, PAC was produced at a 4-times increased specific rate (1.54 versus 0.39 mg U−1 h−1) with simplified catalyst production and reduced cooling cost. Compared to traditional in vivo whole cell PAC production, the yield on benzaldehyde was 26% higher, the product concentration increased 3.9-fold (or 6.9-fold based on the organic phase), the productivity improved 3.1-fold (3.9 g l−1 h−1) and the catalyst was 6.9-fold more efficient (PAC/dry cell mass 10.3 g g−1).*Dedicated with gratitude to Prof. Dr. Franz Lingens – “Theo”.  相似文献   

6.
Photoautotrophic cultivation of Euglena gracilis results in cells with high α-tocopherol content but the final cell concentration is usually very low due to the difficulty of supplying light efficiently to the photobioreactor. On the other hand, Euglena grows heterotrophically to high cell concentrations, using various organic carbon sources, but the α-tocopherol contents of heterotrophically grown cells are usually very low. Sequential heterotrophic/photoautotrophic cultivation, by which cells are grown heterotrophically to high cell concentrations and then transferred to photoautotrophic culture for accumulation of α-tocopherol was therefore investigated for efficient α-tocopherol production. In batch culture, using glucose as the organic carbon source, the cellular α-tocopherol content increased from 120 μg g−1 at the end of heterotrophic phase to more than 400 μg g−1 at the end of the photoautotrophic phase. By using ethanol as the organic carbon source during the heterotrophic phase, adding corn steep liquor as a nitrogen source and optimizing light supply during the photoautotrophic phase, the α-tocopherol content of the cells at the end of the photoautotrophic phase increased to 1700 μg g−1. A system consisting of a mini-jar fermentor (for the heterotrophic phase) and an internally illuminated photobioreactor (for the photoautotrophic phase) was then constructed for continuous sequential heterotrophic/photoautotrophic cultivation. The cells were continuously cultivated heterotrophically in the mini-jar fermentor and the effluent was continuously passed through the photobioreactor for α-tocopherol accumulation. In this way, it was possible to produce 7 g l−1 cells containing about 1100 μg α-tocopherol per g-cell continuously for more than 420 h. The continuous process resulted in α-tocopherol productivity of 100 μg l−1 h−1 which is about 9.5 and 4.6 times higher than those obtained in batch photoautotrophic culture and batch heterotrophic cultures, respectively.  相似文献   

7.
The marine photosynthetic bacterium, Rhodovulum sp. PS88, produces RNA not only in cells but also as an extracellular polymeric substance during aerobic continuous cultivation in the dark. At a dilution rate of 0.32–0.5 h–1, the maximum RNA production was 460 mg RNA l–1 broth (200 mg RNA g–1 suspended solids) which is a value about 2–3 times more than that of yeast cells.  相似文献   

8.
The production of xylitol by the yeast Candida guilliermondii was investigated in batch fermentations with aspenwood hemicellulose hydrolysate and compared with results obtained in semi-defined media with a mixture of glucose and xylose. The hemicellulose hydrolysate had to be supplemented by yeast extract and the maximum xylitol yield (0.8 g g–1) and productivity (0.6 g l–1 h–1) were reached by controlling oxygen input.  相似文献   

9.
The white-throated Dipper (Cinclus cinclus) is unique among passerine birds by its reliance on diving to achieve energy gain in fast-flowing waters. Consequently, it should have evolved behavioural adaptations allowing responding directly to runoff patterns (one of the assumptions of the Natural Flow Regime Paradigm—NRFP). In this study (October 1998–August 2001), we investigated how behavioural and energy use strategies in Dippers might vary under the natural flow regime of snowmelt-dominated streams in The Pyrénées (France) where natural flow regime is highly seasonal and predictable. We recorded time spent in each of 5 behavioural activities of ringed birds to estimate time–activity budgets and derive time–energy budgets enabling the modelling of daily energy expenditure (DEE). Annual pattern in ‘foraging’ and ‘resting’ matched perfectly the annual pattern of the natural regime flow and there was a subtle relationship between water stage and time spent ‘diving’ the later increasing with rising discharge up to a point where it fell back. Thus, time–activity budgets meet the main prediction of the NRFP. For males and females Dippers, estimates of feeding rates (ratio Eobs/Ereq = observed rate of energy gain / required foraging rate) and energy stress (M = DEE / Basal Metabolic Rate) also partly matched the NFRP. Maximum value for the ratio Eobs/Ereq was registered in May whilst M peaked in spring. These ratios indicated that Pyrenean Dippers could face high energy stress during winter but paradoxically none during high snowmelt spates when food is expected to be difficult to obtain in the channel and when individual birds were observed spending ca 75% of the day ‘resting’. Annual pattern in DEE did not match the NFRP ; two phases were clearly identified, the first between January to June (with oscillating values 240–280 kJ d− 1 ind− 1) and the second between July and December (200–220 kJ d− 1 ind− 1). As total energy expenditure was higher during the most constraining season or life cycle, we suggest that energy management by Dippers in Pyrenean mountain streams may fit the ‘peak total demand’ hypothesis. At this step of the study, it is not possible to tell whether Dippers use an ‘energy-minimisation’ or an ‘energy-maximisation' strategy.  相似文献   

10.
Studies on mixed mass cultivation of Anabaena spp. on a large scale (5170m2) were conducted continuously for 3 years. Under the continental monsoon climate in northern subtropics (30°N, 115°E), 7–11 g dry weight m−2 day−1 of microalgal biomass on average was harvested in simple plastic greenhouses in the effective growth days during the warmer seasons. The maximum productivity was 22 g m−2 day−1 in the middle of summer. Observations on the productive properties of strains of Anabaena spp. indicated that they were different from and could compensate for each other in their productivities and adaptations to the seasonal changes. With different lining materials (PVC sheets, concrete, sand and soil) in the culture ponds, no significant variation of productivity was found, but bubbling with biogas in the middle of the day and the application of some growth regulating substances (2,4-D, NaHSO3 and extracts of oyster mushroom spawn) was able to improve the production. The cost of microalgal biomass in this way was around 0·75–1·0 US dollar(s) per kilogram.  相似文献   

11.
In this study, the factors affecting ferulic acid (FA) release from Brewer’s spent grain (BSG), by the crude enzyme extract of Fusarium oxysporum were investigated. In order to evaluate the importance of the multienzyme preparation on FA release, the synergistic action of feruloyl esterase (FAE, FoFaeC-12213) and xylanase (Trichoderma longibrachiatum M3) monoenzymes was studied. More than double amount of FA release (1 mg g−1 dry BSG) was observed during hydrolytic reactions by the crude enzyme extract compared to hydrolysis by the monoenzymes (0.37 mg g−1 dry BSG). The protease content of the crude extract and the inhibitory effect of FA as an end-product were also evaluated concerning their effect on FA release. The protease treatment prior to hydrolysis by monoenzymes enhanced FA release about 100%, while, for the first time in literature, FA in solution found to have a significant inhibitory effect on FAE activity and on total FA release.  相似文献   

12.
We studied the seasonal variation on aerobic metabolism and the response of oxidative stress parameters in the digestive glands of the subpolar limpet Nacella (P.) magellanica. Sampling was carried out from July (winter) 2002 to July 2003 in Beagle Channel, Tierra del Fuego, Argentina. Whole animal respiration rates increased in early spring as the animals spawned and remained elevated throughout summer and fall (winter: 0.09 ± 0.02 μmol O2 h− 1 g− 1; summer: 0.31 ± 0.06 μmol O2 h− 1 g− 1). Oxidative stress was assessed at the hydrophilic level as the ascorbyl radical content / ascorbate content ratio (A / AH). The A / AH ratio showed minimum values in winter (3.7 ± 0.2 10− 5 AU) and increased in summer (18 ± 5 10− 5 AU). A similar pattern was observed for lipid radical content (122 ± 29 pmol mg− 1 fresh mass [FW] in winter and 314 ± 45 pmol mg− 1 FW in summer), iron content (0.99 ± 0.07 and 2.7 ± 0.6 nmol mg− 1 FW in winter and summer, respectively) and catalase activity (2.9 ± 0.2 and 7 ± 1 U mg− 1 FW in winter and summer, respectively). Since nitrogen derived radicals are thought to be critically involved in oxidative metabolism in cells, nitric oxide content was measured and a significant difference in the content of the Fe–MGD–NO adduct in digestive glands from winter and summer animals was observed. Together, the data indicate that both oxygen and nitrogen radical generation rates in N. (P.) magellanica are strongly dependent on season.  相似文献   

13.
D(–)-Lactic acid was produced from cellulose by simultaneous saccharification and fermentation (SSF) in media containing cellulolytic enzymes and Lactobacillus coryniformis subsp. torquens ATCC 25600 at 39 °C and pH 5.4, yielding 0.89 g D(–)-lactic acid g–1 cellulose at a mean volumetric productivity of 0.5 g l–1 h–1. No L(+)-lactic acid was found in the medium.  相似文献   

14.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

15.
Gordonia alkanivorans strain 1B is able to desulfurize dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP), the final product of the 4S pathway. However, both the cell growth and the rate of desulfurization can be largely affected by the nutrient composition of the growth medium due to cofactor requirements of many enzymes involved in the biochemical pathways. In this work, the effect of several metal ions on the growth and DBT desulfurization by G. alkanivorans was studied. From all the metal ions tested, only the absence of zinc significantly affected the cell growth and the desulfurization rate. By increasing the concentration of Zn from 1 to 10 mg L−1, 2-HBP productivity was improved by 26%. The absence of Zn2+, when sulfate was also used as the only sulfur source, did not cause any difference in the bacterial growth. Resting cells grown in the presence of Zn2+ exhibited a 2-HBP specific productivity of 2.29 μmol g−1 (DCW) h−1, 7.6-fold higher than the specific productivity obtained by resting cells grown in the absence of Zn2+ (0.30 μmol g−1 (DCW) h−1). These data suggests that zinc might have a key physiological role in the metabolism of DBT desulfurization.  相似文献   

16.
A detoxification method using activated charcoal with concentrated rice straw hemicellulosic hydrolysate improved the conversion of xylose to xylitol by the yeast Candida guilliermondii by 22%. This was achieved when the hydrolysate:charcoal ratio was 40 g g–1, resulting in removal of 27% of phenolic compounds. Under this condition, the xylitol yield factor (0.72 g g–1) and volumetric productivity (0.61 g l–1 h–1) were close to those attained in a semi-defined medium simulating hydrolysate sugars.  相似文献   

17.
The dimorphic fungus Mucor indicus was grown in different forms classified as purely filamentous, mostly filamentous, mostly yeast-like and purely yeast-like, and the relationship between morphology and metabolite production, inhibitor tolerance and the cell wall composition was investigated. Low concentrations of spores in the inoculum with subsequent aeration promoted filamentous growth, whereas higher spore concentrations and anaerobic conditions promoted yeast-like growth. Ethanol was the main metabolite with glycerol next under all conditions tested. The yields of ethanol from glucose were between 0.39 and 0.42 g g−1 with productivities of 3.2–5.0 g l−1 h−1. The ethanol productivity of mostly filamentous cells was increased from 3.9 to 5.0 g l−1 h−1 by the presence of oxygen, whereas aeration of purely yeast-like cells showed no such effect. All growth forms were able to tolerate 4.6 g l−1 furfural and 10 g l−1 acetic acid and assimilate the sugars, although with different consumption rates. The cell wall content of the fungus measured as alkali insoluble materials (AIM) of the purely yeast-like cells was 26% of the biomass, compared to 8% of the pure filaments. However, the chitosan concentration of the filaments was 29% of the AIM, compared to 6% of the yeast-like cells.  相似文献   

18.
A number of bacteria belonging to the genera Proteus, Providencia, Pseudomonas and Erwinia have been tested for their capacity to oxidize -amino acids to their corresponding α-keto acids. Members of the Proteus and the Providencia genera were active towards various -amino acids. Immobilized cell preparations of Providencia sp. PCM 1298 were shown to form up to 80 mg α-keto-γ-methiol butyric acid from -methionine per g of gel preparation (containing 4% w/w cells) per day. The productivity was highly dependent on the size of the beads. Oxygen appeared to be the rate-limiting substrate and oxygen transfer rates of 3–4 μmol cm−2 h−1 were calculated. The entrapment of activated charcoal to remove H2O2 formed during the oxidation extended the half-life of the immobilized biocatalyst considerably. A decrease in -amino acid oxidase [ -amino acid: oxygen oxidoreductase (deaminating); EC 1.4.3.2] activity during operation could be compensated for by reinoculation of the alginate-entrapped cells in fresh growth medium, allowing use of these preparations of immobilized bacterial cells for more than one month.  相似文献   

19.
Lu CT  Mei XG 《Biotechnology letters》2003,25(17):1437-1439
When, on the 15th day of growth, an elicitor from Fusarium solani was added at 40 mg l–1 to Cistanche deserticola cell suspension cultures, the contents of echinacoside, acteoside and total phenylethanoid glycosides (PeGs) in cultured cells all increased over the next 27 d by over 100% to 15 mg g–1 dry wt, 9 mg g–1 dry wt and 57 mg g–1 dry wt, respectively. The final biomass (1.3 mg dry wt ml–1) was not affected.  相似文献   

20.
A novel raw starch degrading α-cyclodextrin glycosyltransferase (CGTase; E.C. 2.4.1.19), produced by Klebsiella pneumoniae AS-22, was purified to homogeneity by ultrafiltration, affinity and gel filtration chromatography. The specific cyclization activity of the pure enzyme preparation was 523 U/mg of protein. No hydrolysis activity was detected when soluble starch was used as the substrate. The molecular weight of the pure protein was estimated to be 75 kDa with SDS-PAGE and gel filtration. The isoelectric point of the pure enzyme was 7.3. The enzyme was most active in the pH range 5.5–9.0 whereas it was most stable in the pH range 6–9. The CGTase was most active in the temperature range 35–50°C. This CGTase is inherently temperature labile and rapidly loses activity above 30°C. However, presence of soluble starch and calcium chloride improved the temperature stability of the enzyme up to 40°C. In presence of 30% (v/v) glycerol, this enzyme was almost 100% stable at 30°C for a month. The Km and kcat values for the pure enzyme were 1.35 mg ml−1 and 249 μM mg−1 min−1, respectively, with soluble starch as the substrate. The enzyme predominantly produced α-cyclodextrin without addition of any complexing agents. The conditions employed for maximum α-cyclodextrin production were 100 g l−1 gelatinized soluble starch or 125 g l−1 raw wheat starch at an enzyme concentration of 10 U g−1 of starch. The α:β:γ-cyclodextrins were produced in the ratios of 81:12:7 and 89:9:2 from gelatinized soluble starch and raw wheat starch, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号