首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two different patterns of the condensation and chondrification of the limbs of tetrapods are known from extensive studies on their early skeletal development. These are on the one hand postaxial dominance in the sequential formation of skeletal elements in amniotes and anurans, and on the other, preaxial dominance in urodeles. The present study investigates the relative sequence of ossification in the fore‐ and hindlimbs of selected tetrapod taxa based on a literature survey in comparison to the patterns of early skeletal development, i.e. mesenchymal condensation and chondrification, representing essential steps in the late stages of tetrapod limb development. This reveals the degree of conservation and divergence of the ossification sequence from early morphogenetic events in the tetrapod limb skeleton. A step‐by‐step recapitulation of condensation and chondrification during the ossification of limbs can clearly be refuted. However, some of the deeper aspects of early skeletal patterning in the limbs, i.e. the general direction of development and sequence of digit formation are conserved, particularly in anamniotes. Amniotes show a weaker coupling of the ossification sequence in the limb skeleton with earlier condensation and chondrification events. The stronger correlation between the sequence of condensation/chondrification and ossification in the limbs of anamniotes may represent a plesiomorphic trait of tetrapods. The pattern of limb ossification across tetrapods also shows that some trends in the sequence of ossification of their limb skeleton are shared by major clades possibly representing phylogenetic signals. This review furthermore concerns the ossification sequence of the limbs of the Palaeozoic temnospondyl amphibian Apateon sp. For the first time this is described in detail and its patterns are compared with those observed in extant taxa. Apateon sp. shares preaxial dominance in limb development with extant salamanders and the specific order of ossification events in the fore‐ and hindlimb of this fossil dissorophoid is almost identical to that of some modern urodeles.  相似文献   

2.
Ontogenetic evidence for the Paleozoic ancestry of salamanders   总被引:2,自引:0,他引:2  
The phylogenetic positions of frogs, salamanders, and caecilians have been difficult to establish. Data matrices based primarily on Paleozoic taxa support a monophyletic origin of all Lissamphibia but have resulted in widely divergent hypotheses of the nature of their common ancestor. Analysis that concentrates on the character states of the stem taxa of the extant orders, in contrast, suggests a polyphyletic origin from divergent Paleozoic clades. Comparison of patterns of larval development in Paleozoic and modern amphibians provides a means to test previous phylogenies based primarily on adult characteristics. This proves to be highly informative in the case of the origin of salamanders. Putative ancestors of salamanders are recognized from the Permo-Carboniferous boundary of Germany on the basis of ontogenetic changes observed in fossil remains of larval growth series. The entire developmental sequence from hatching to metamorphosis is revealed in an assemblage of over 600 specimens from a single locality, all belonging to the genus Apateon. Apateon forms the most speciose genus of the neotenic temnospondyl family Branchiosauridae. The sequence of ossification of individual bones and the changing configuration of the skull closely parallel those observed in the development of primitive living salamanders. These fossils provide a model of how derived features of the salamander skull may have evolved in the context of feeding specializations that appeared in early larval stages of members of the Branchiosauridae. Larvae of Apateon share many unique derived characters with salamanders of the families Hynobiidae, Salamandridae, and Ambystomatidae, which have not been recognized in any other group of Paleozoic amphibians.  相似文献   

3.
On the basis of studies on serial sections of larval Ranodon sibiricus limbs and published data, the hypothesis of the origin of tetrapod limbs from the biserial archipterygium is proposed. The mesomeres of the central axis of the biserial fin correspond (in proximodistal direction) to the humerus, ulna, ulnare, all carpalia distalia, metacarpale 1, and phalanges of the first digit in the forelimb of caudate amphibians and to the femur, fibula, fibulare, tarsalia distalia, metatarsale 1, and phalanges of the first digit in the hind limb. The preaxial elements of the zygopodium and autopodium, which are positioned proximal to the digital arch, correspond to the preaxial rays of the biserial fin, and digits 2–5 correspond to its postaxial rays. As the fin transformed into the limb, the central axis curved preaxially, forming the digital arch and resulting in partial reduction and fusion of preaxial rays.  相似文献   

4.
Most investigations on tetrapod locomotion have been concerned with limb movements. However, there is compelling evidence that the axial musculoskeletal system contributes to important functions during locomotion. Adult salamanders offer a remarkable opportunity to examine these functions because these amphibians use axial undulations to propel themselves in both aquatic and terrestrial environments. In this article, we review the currently available biological data on axial functions during various locomotor modes in salamanders. We also present data showing the modular organisation of the neural networks that generate axial synergies during locomotion. The functional implication of this modular organisation is discussed.  相似文献   

5.
Direct‐developing amphibians form limbs during early embryonic stages, as opposed to the later, often postembryonic limb formation of metamorphosing species. Limb patterning is dramatically altered in direct‐developing frogs, but little attention has been given to direct‐developing salamanders. We use expression patterns of two genes, sox9 and col2a1, to assess skeletal patterning during embryonic limb development in the direct‐developing salamander Plethodon cinereus. Limb patterning in P. cinereus partially resembles that described in other urodele species, with early formation of digit II and a generally anterior‐to‐posterior formation of preaxial digits. Unlike other salamanders described to date, differentiation of preaxial zeugopodial cartilages (radius/tibia) is not accelerated in relation to the postaxial cartilages, and there is no early differentiation of autopodial elements in relation to more proximal cartilages. Instead, digit II forms in continuity with the ulnar/fibular arch. This amniote‐like connectivity to the first digit that forms may be a consequence of the embryonic formation of limbs in this direct‐developing species. Additionally, and contrary to recent models of amphibian digit identity, there is no evidence of vestigial digits. This is the first account of gene expression in a plethodontid salamander and only the second published account of embryonic limb patterning in a direct‐developing salamander species.  相似文献   

6.
7.
Salamanders are infrequently mentioned in analyses of tetrapod limb formation, as their development varies considerably from that of amniotes. However, urodeles provide an opportunity to study how limb ontogeny varies with major differences in life history. Here we assess limb development in Desmognathus aeneus, a direct-developing salamander, and compare it to patterns seen in salamanders with larval stages (e.g., Ambystoma mexicanum). Both modes of development result in a limb that is morphologically indistinct from an amniote limb. Developmental series of A. mexicanum and D. aeneus were investigated using Type II collagen immunochemistry, Alcian Blue staining, and whole-mount TUNEL staining. In A. mexicanum, as each digit bud extends from the limb palette Type II collagen and proteoglycan secretion occur almost simultaneously with mesenchyme condensation. Conversely, collagen and proteoglycan secretion in digits of D. aeneus occur only after the formation of an amniote-like paddle. Within each species, Type II collagen expression patterns resemble those of proteoglycans. In both, distal structures form before more proximal structures. This observation is contrary to the proximodistal developmental pattern of other tetrapods and may be unique to urodeles. In support of previous findings, no cell death was observed during limb development in A. mexicanum. However, apoptotic cells that may play a role in digit ontogeny occur in the limbs of D. aeneus, thereby suggesting that programmed cell death has evolved as a developmental mechanism at least twice in tetrapod limb evolution.  相似文献   

8.
Focal Review: The Origin(s) of Modern Amphibians   总被引:1,自引:1,他引:0  
  相似文献   

9.
Evolutionary change does not proceed in every direction with equal probability. Evolutionary biases or constraints are limitations on the mode, direction and tempo of evolution. Early tetrapods provide interesting examples, especially Paleozoic and Mesozoic amphibians. (1) Body size had a strong impact on morphology and development in early amphibians, resulting in manifold convergences imposed by design limitations. Miniaturisation had similar effects in a wide range of Paleozoic tetrapods, which are consistent with observations on extant salamanders. Gigantism was a common feature of Triassic temnospondyls, correlating with slow developmental rates similar to those of gigantic salamanders and the convergent evolution of bone density. (2) Ontogeny imposes constraints on evolution by canalised (buffered) developmental sequences. In Paleozoic temnospondyls, ontogenetic trajectories evolved by several different modes (truncation of the trajectory, shifting of events or condensation of events). Metamorphosis is an extreme example of a condensed developmental sequence, which first evolved in Paleozoic temnospondyls, increased in salamanders and culminated in anurans. It imposes strong biases that may be broken by three conceivable modes: (1) loss of the adult period (neoteny), (2) loss of the larval period (direct development) and (3) ‘unpacking’ of metamorphosis by re-evolving the plesiomorphic trajectory.  相似文献   

10.
11.
The skull and jaw musculature as guides to the ancestry of salamanders   总被引:4,自引:0,他引:4  
The fossil record provides no evidence supporting a unique common ancestry for frogs, salamanders and apodans. The ancestors of the modern orders may have diverged from one another as recently as 250 million years ago, or as long ago as 400 million years according to current theories of various authors. In order to evaluate the evolutionary patterns of the modern orders it is necessary to determine whether their last common ancestor was a rhipidistian fish, a very primitive amphibian, a labyrimhodom or a ‘lissamphibian’. The broad cranial similarities of frogs and salamanders, especially the dominance of the braincase as a supporting element, can be associated with the small size of the skull in their immediate ancestors. Hynobiids show the most primitive cranial pattern known among the living salamander families and “provide a model for determining the nature of the ancestors of the entire order. Features expected in ancestral salamanders include: (1) Emargination of the cheek; (2) Movable suspensorium formed by the quadrate, squamosal and pterygoid; (3) Occipital condyle posterior to jaw articulation; (4) Distinct prootic and opisthotic; (5) Absence ol otic notch; (6) Stapes forming a structural link between braincase and cheek. In the otic region, cheek and jaw suspension, the primitive salamander pattern (resembles most closely the microsaurs among known Paleozoic amphibians, and shows no significant features in common with either ancestral frogs or the majority of labyrinth odonts. The basic pattern of the adductor jaw musculature is consistent within both frogs and salamanders, but major differences are evident between the two groups. The dominance of the adductor mandibulae externus in salamanders can be associated with the open cheek in all members of that order, and the small size of this muscle in frogs can be associated with the large otic notch. The spread of different muscles over the otic capsule, the longus head ol the adductor mandibulae posterior in frogs and the superficial head of the adductor mandibulae internus in salamanders, indicates that fenestration of the skull posterodorsal to the orbit occurred separately in the ancestors of the two groups. Reconstruction of the probable pattern of the jaw musculature in Paleozoic amphibians indicates that frogs and salamanders might have evolved from a condition hypothesized for primitive labyrinthodonts, but the presence of a large otic notch in dissorophids suggests specialization toward the anuran, not the urodele condition. The presence of either an einarginated cheek or an embayment of the lateral surface of the dentary and the absence of an otic notch in microsaurs indicate a salamander-like distribution of die adductor jaw muscles. The ancestors of frogs and salamanders probably diverged from one another in the early Carboniferous, Frogs later evolved from small labyrinthodonts and salamanders from microsaurs. Features considered typical of lissamphibians evolved separately in the two groups in the late Permian andTriassic.  相似文献   

12.
Zhang P  Zhou H  Chen YQ  Liu YF  Qu LH 《Systematic biology》2005,54(3):391-400
Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution.  相似文献   

13.
Explanation for naturally occurring supernumerary limbs in amphibians   总被引:6,自引:0,他引:6  
The occasional occurrence of high frequencies of limb abnormalities, including extra limbs, in natural populations of amphibians has long been a puzzle. In this paper we report the discovery of a population in which such limb abnormalities appear to be caused by a parasitic flatworm (trematode) that uses amphibians as intermediate hosts. The cercarial larval stage of the trematode attacks amphibians, penetrating the skin to form cysts (metacercariae). The cysts are preferentially localized in the cloacal region, including the developing hind limb regions in larvae of both frogs (Hyla regilla) and salamanders (Ambystoma macrodactylum). A wide range of limb abnormalities are seen, including duplicated limb structures ranging from extra digits to several extra whole limbs. We hypothesize that these limb abnormalities result from localized regulatory responses of developing and regenerating limb tissues to mechanical disruption caused by the trematode cysts. We have tested this idea by implanting inert resin beads into developing limb buds of frogs and salamanders. Since this treatment can cause supernumerary limb structures, our hypothesis is sufficient to explain the naturally occurring extra limbs.  相似文献   

14.
In this study, we integrate information from phylogeny, comparative ontogeny, and experimental embryology in an attempt to elucidate the mechanisms controlling evolutionary trends towards digital reduction and loss observed in amphibians. Frogs and salamanders that have lost phalanges and even whole toes have done so in a very ordered manner, i.e., certain skeletal elements are lost prior to others. This pattern of morphological diversity is described and trends elucidated. It is concluded that the process is characterized by striking intraordinal convergences coupled with substantial differences between the trends observed in frogs as compared to urodeles. We argue that this pattern is essentially a reflection of the differences in the ontogenies of the two orders. Similarly, the convergences within urodeles and within anurans can be explained as the result of regulation of developmental parameters in a resilient developmental program. We further explore this hypothesis by experimentally perturbing the number of cells in the embryonic limb primordium to show that reduction in the number of mesenchymal cells secondarily affects the developmental process of pattern formation causing a rearrangement of the skeletal morphology of the foot. The same experimental manipulation has different effects in frogs as compared to salamanders. However, in both cases, the experimentally generated morphologies tend to parallel the phenotypes and trends observed in nature. Our conclusion is that most of the patterns of diversity in the digital morphology of amphibians can be explained as a reflection of developmental properties. In general, we present a methodology that attempts to empirically address the issue of identifying developmental constraint in morphological evolution.  相似文献   

15.
Most textbooks and research reports state that the structures of the tetrapod forelimbs and hindlimbs are serial homologues. From this view, the main challenge of evolutionary biologists is not to explain the similarity between tetrapod limbs, but instead to explain why and how they have diverged. However, these statements seem to be related to a confusion between the serial homology of the vertebrate pelvic and pectoral appendages as a whole, and the serial homology of the specific soft‐ and hard‐tissue structures of the tetrapod forelimbs and hindlimbs, leading to an even more crucial and puzzling question being overlooked: why are the skeletal and particularly the muscle structures of the forelimb and hindlimb actually so strikingly similar to each other? Herein we provide an updated discussion of these questions and test two main hypotheses: (i) that the similarity of the limb muscles is due to serial homology; and (ii) that tetrapods that use hindlimbs for a largely exclusive function (e.g. bipedalism in humans) exhibit fewer cases of similarity between forelimbs and hindlimbs than do quadrupedal species. Our review shows that of the 23 arm, forearm and hand muscles/muscle groups of salamanders, 18 (78%) have clear ‘topological equivalents' in the hindlimb; in lizards, 14/24 (58%); in rats, 14/35 (40%); and in modern humans, 19/37 (51%). These numbers seem to support the idea that there is a plesiomorphic similarity and subsequent evolutionary divergence, but this tendency actually only applies to the three former quadrupedal taxa. Moreover, if one takes into account the total number of ‘correspondences’, one comes to a surprising and puzzling conclusion: in modern humans the number of forelimb muscles/muscle groups with clear ‘equivalents’ in the hindlimb (19) is substantially higher than in quadrupedal mammals such as rats (14), lizards (14) and even salamanders (18). These data contradict the hypothesis that divergent functions lead to divergent morphological structures. Furthermore, as we show that at least five of the 19 modern human adult forelimb elements that have a clear hindlimb ‘equivalent’ derive from embryonic anlages that are very different from the ones giving rise to their adult hindlimb ‘equivalents’, they also contradict the hypothesis that the similarity in muscle structures between the forelimb and hindlimb of tetrapods such as modern humans are due to their origin as serial homologues. This similarity is instead the result of phylogenetically independent evolutionary changes leading to a parallelism/convergence due to: (i) developmental constraints, i.e. similar molecular mechanisms are involved (particularly in the formation of the neomorphic hand), but this does not necessarily mean that similar anlages are used to form the similar adult structures; (ii) functional constraints, related to similar adaptations; (iii) topological constraints, i.e. limited physical possibilities; and even (iv) phylogenetic constraints, which tend to prevent/decrease the occurrence of new homoplasic similarities, but also help to keep older, ancestral homoplasic resemblances.  相似文献   

16.
Patterns of phenotypic evolution can abruptly shift as species move between adaptive zones. Extant salamanders display three distinct life cycle strategies that range from aquatic to terrestrial (biphasic), to fully aquatic (paedomorphic) and to fully terrestrial (direct development). Life cycle variation is associated with changes in body form such as loss of digits, limb reduction or body elongation. However, the relationships among these traits and life cycle strategy remain unresolved. Here, we use a Bayesian modelling approach to test whether life cycle transitions by salamanders have influenced rates, optima and integration of primary locomotory structures (limbs and trunk). We show that paedomorphic salamanders have elevated rates of limb evolution with optima shifted towards smaller size and fewer digits compared to all other salamanders. Rate of hindlimb digit evolution is shown to decrease in a gradient as life cycles become more terrestrial. Paedomorphs have a higher correlation between hindlimb digit loss and increases in vertebral number, as well as reduced correlations between limb lengths. Our results support the idea that terrestrial plantigrade locomotion constrains limb evolution and, when lifted, leads to higher rates of trait diversification and shifts in optima and integration. The basic tetrapod body form of most salamanders and the independent losses of terrestrial life stages provide an important framework for understanding the evolutionary and developmental mechanisms behind major shifts in ecological zones as seen among early tetrapods during their transition from water to land.  相似文献   

17.
An unsolved question in evolutionary genomics is whether amniote genomes have been expanding or contracting since the common ancestor of this diverse group. Here, we report on the polarity of amniote genome size evolution using genome size estimates for 14 extinct tetrapod genera from the Paleozoic and early Mesozoic Eras using osteocyte lacunae size as a correlate. We find substantial support for a phylogenetically controlled regression model relating genome size to osteocyte lacunae size (P of slopes <0.01, r2=0.65, phylogenetic signal λ=0.83). Genome size appears to have been homogeneous across Paleozoic crown-tetrapod lineages (average haploid genome size 2.9-3.7 pg) with values similar to those of extant mammals. The differentiation in genome size and underlying architecture among extant tetrapod lineages likely evolved in the Mesozoic and Cenozoic Eras, with expansion in amphibians, contractions along the diapsid lineage, and no directional change within the synapsid lineage leading to mammals.  相似文献   

18.
19.
Adult urodeles (salamanders) are unique in their ability to regenerate complex organs perfectly. The recently developed Accessory Limb Model (ALM) in the axolotl provides an opportunity to identify and characterize the essential signaling events that control the early steps in limb regeneration. The ALM demonstrates that limb regeneration progresses in a stepwise fashion that is dependent on signals from the wound epidermis, nerves and dermal fibroblasts from opposite sides of the limb. When all the signals are present, a limb is formed de novo. The ALM thus provides an opportunity to identify and characterize the signaling pathways that control blastema morphogenesis and limb regeneration. Our previous study provided data on cell contribution, cell migration and nerve dependency indicating that an ectopic blastema is equivalent to an amputation-induced blastema. In the present study, we have determined that formation of both ectopic blastemas and amputation-induced blastemas is regulated by the same molecular mechanisms, and that both types of blastema cells exhibit the same functions in controlling growth and pattern formation. We have identified and validated five marker genes for the early stages of wound healing, dedifferentiation and blastema formation, and have discovered that the expression of each of these markers is the same for both ectopic and amputation-induced blastemas. In addition, ectopic blastema cells interact coordinately with amputation-induced blastema cells to form a regenerated limb. Therefore, the ALM is appropriate for identifying the signaling pathways regulating the early events of tetrapod limb regeneration.  相似文献   

20.
Transition from sarcopterygians to tetrapods is analyzed based on new paleontological, ontogenetic, and molecular data. It is shown that transformation of skeletal fin elements into the tetrapod limb followed the patterns of divergent, parallel, and mosaic development. Morphogenetic plasticity and autonomy of these processes as well as the same developmental bauplan for the limbs of Urodela and Anura are proposed. Variations observed in these processes are regarded as a result of larval adaptations and heterochronies. The latter excludes recapitulation of successive archetypical states (transformation-development of the fish fin into tetrapod limb). The idea that the digits are a novelty relative to the distal radials of the fin is supported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号