首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M A Kahlow  T M Zuberi  R B Gennis  T M Loehr 《Biochemistry》1991,30(49):11485-11489
The 680-nm-absorbing "peroxide state" of the Escherichia coli cytochrome d terminal oxidase complex, obtained by addition of excess hydrogen peroxide to the enzyme, is shown to be a ferryl intermediate in the catalytic cycle of the enzyme. This ferryl intermediate is also created by aerobic oxidation of the fully reduced enzyme. Resonance Raman spectra with 647.1-nm excitation show an FeIV = O stretching band at 815 cm-1, a higher frequency than noted in any other ferryl-containing enzyme to date. The band shows an 16O/18O frequency shift of -46 cm-1, larger than that observed for any porphyrin ferryl species. The FeIV = O formulation was unambiguously established by oxidations of the reduced enzyme with 16O2, 18O2, and 16O18O. Only the use of a mixed-isotope gas permitted discrimination between a ferryl and a peroxo structure. A catalytic cycle for the cytochrome d terminal oxidase complex is proposed, and possible reasons for the high v(Fe = O) frequency are discussed.  相似文献   

2.
Stabilized intermediate redox states of cytochrome c are generated by radiolytic reduction of initially oxidized enzyme in glass matrices at liquid nitrogen temperature. In the intermediate states the heme group is reduced by hydrated electrons, whereas the protein conformation is restrained close to its oxidized form by the low-temperature glass matrix. The intermediate and stable redox states of cytochrome c at neutral and alkaline pH are studied by low-temperature resonance Raman spectroscopy using excitations in resonance with the B (Soret) and Q1 (beta) optical transitions. The assignments of the cytochrome c resonance Raman bands are discussed. The observed spectral characteristics of the intermediate states as well as of the alkaline transition in the oxidized state are interpreted in terms of oxidation-state marker modes, spin-state marker modes, heme iron--axial ligand stretching modes, totally symmetric in-plane porphyrin modes, nontotally symmetric in-plane modes, and out-of-plane modes.  相似文献   

3.
A metastable state of myoglobin is produced by reduction of metmyoglobin at low temperatures. This is done either by irradiation with x-rays at 80 K or by electron transfer from photoexcited tris(2, 2'-bipyridine)-ruthenium(II) at 20 K. At temperatures above 150 K, the conformational transition toward the equilibrium deoxymyoglobin is observed. X-ray crystallography, Raman spectroscopy, and temperature-dependent optical absorption spectroscopy show that the metastable state has a six-ligated iron low-spin center. The x-ray structure at 115K proves the similarity of the metastable state with metmyoglobin. The Raman spectra yield the high-frequency vibronic modes and give additional information about the distortion of the heme. Analysis of the temperature dependence of the line shape of the Soret band reveals that a relaxation within the metastable state starts at approximately 120 K. Parameters representative of static properties of the intermediate state are close to those of CO-ligated myoglobin, while parameters representative of dynamics are close to deoxymyoglobin. Thus within the metastable state the relaxation to the equilibrium is initiated by changes in the dynamic properties of the active site.  相似文献   

4.
Cytochrome c, released from mitochondria into the cytosol, triggers formation of the apoptosome resulting in activation of caspases. This paper reviews the evidence for and against the redox state of cytochrome c regulating apoptosis, and possible mechanisms of this. Three research groups have found that the oxidized form of cytochrome c (Fe(3+)) can induce caspase activation via the apoptosome, while the reduced form (Fe(2+)) cannot. It is unclear whether this is due to the oxidized and reduced forms of cytochrome c having: (i) different affinities for Apaf-1, (ii) different abilities to activate Apaf-1 once bound, or (iii) different affinities for other components of the cell. Experiments replacing the Fe of cytochrome c with redox-inactive metals indicate that cytochrome c does not have to change redox states to activate caspases. In healthy cells, cytosolic cytochrome c is rapidly reduced by various enzymes and/or reductants, which may function to block apoptosis. However, in apoptotic cells, cytosolic cytochrome c is rapidly oxidized by mitochondrial cytochrome oxidase, to which it has access due to permeabilization of the outer membrane. Regulation of the redox state of cytochrome c potentially enables regulation of the intrinsic pathway of apoptosis at a relatively late stage.  相似文献   

5.
Photoactive yellow protein (PYP) is a bacterial blue light receptor containing a 4-hydroxycinnamyl chromophore, and its absorption maximum is 446 nm. In a dark state, the hydroxyl group of the chromophore is deprotonated and forms hydrogen bonds with Tyr42 and Glu46. Either removal of a hydrogen bond with Tyr42 or addition of chaotropes such as thiocyanate produces a blue-shifted species called an intermediate wavelength form, in which absorption maximum ranges from 355 to 400 nm. To examine the structural origin of the intermediate wavelength form, we have performed resonance Raman investigations of wild-type PYP and some mutants (Tyr42 --> Ala, Tyr42 --> Phe, Glu46 --> Gln, and Thr50 --> Val) in the presence or absence of potassium thiocyanate. These studies show that the chromophore of the intermediate wavelength form is protonated, implying an increase in a pK(a) of the chromophore. Hence, the removal of the hydrogen bond between Tyr42 and chromophore or partial protein denaturation in the presence of thiocyanate results in a spectral blue-shift. Quantum chemical calculations based on density functional theory further support the idea that the pK(a) of the chromophore is increased by removing a hydrogen bond or by increasing the dielectric constant in the vicinity of the chromophore.  相似文献   

6.
In the present study we show that N-acetylsphingosine (C2-ceramide), N-hexanoylsphingosine (C6-ceramide), and, to a much lesser extent, C2-dihydroceramide induce cytochrome c (cyto c) release from isolated rat liver mitochondria. Ceramide-induced cyto c release is prevented by preincubation of mitochondria with a low concentration (40 nM) of Bcl-2. The release takes place when cyto c is oxidized but not when it is reduced. Upon cyto c loss, mitochondrial oxygen consumption, mitochondrial transmembrane potential (Delta Psi), and Ca2+ retention are diminished. Incubation with Bcl-2 prevents, and addition of cyto c reverses the alteration of these mitochondrial functions. In ATP-energized mitochondria, ceramides do not alter Delta Psi, neither when cyto c is oxidized nor when it is reduced, ruling out a nonspecific disturbance by ceramides of mitochondrial membrane integrity. Furthermore, ceramides decrease the reducibility of cyto c. We conclude that the apoptogenic properties of ceramides are in part mediated via their interaction with mitochondrial cyto c followed by its release and that the redox state of cyto c influences its detachment by ceramide from the inner mitochondrial membrane.  相似文献   

7.
The pH dependence of the oxidation-state marker line of hemoproteins is investigated in cytochrome c peroxidase with Raman difference spectroscopy. The frequency is sensitive to ionization of a group on the protein that regulates catalytic activity of the resting ferriheme enzyme. The oxidation-state marker line shows a transition with pK of 5.5 in good agreement with other spectroscopic measurements and kinetic measurements of binding of peroxide, and other ligands to the native enzyme. The shift of 0.8 cm-1 to higher frequency at pH 4.5 relative to the pH 6.4 value is interpreted in terms of a substantial decrease in pi-electron density in the porphyrin ring. Charge density in the pi-system is highest at maximal activity, as would be expected if donor-acceptor interactions with residues of the protein stabilize the oxidized Fe(IV) reaction intermediate. Evidence of additional heme-linked ionizations with pK values near 7.5 is found; this alkaline transition involves deprotonation of several groups of the protein, conversion of iron from high to low spin, and, possibly, denaturation of the protein.  相似文献   

8.
The interaction of ferricytochrome c with negatively charged heteropolytungstates was studied by resonance Raman spectroscopy. In analogy to previous findings on ferricytochrome c bound to other types of charged interface (Hildebrandt, P. and Stockburger, M. (1989) Biochemistry 28, 6710-6721, 6722-6728), it was shown that in these complexes the conformational states I and II are stabilized. While in state I, the structure is the same as is in the uncomplexed heme protein, in state II three different coordination configurations coexist, i.e., a six-coordinated low-spin, a five-coordinated high-spin and a six-coordinated high-spin form. These configurations constitute thermal coordination equilibria whose thermodynamic properties were determined. The detailed analysis of the low-frequency resonance Raman spectra reveals that in state II the heme pocket assumes an open structure leading to a significantly higher flexibility of the heme group compared to the native ferricytochrome c. It is concluded that these structural changes are the result of Coulombic attractions between the polyanions and the lysine residues around the exposed heme edge which destabilize the heme crevice. Modifications of these interactions upon variation of the ionic strength, the pH or the type of the polytungstate are sensitively reflected by changes of the coordination equilibria in state II as well as of the conformational equilibrium of state I and state II. The conformational changes in state II significantly differ from those associated with the alkaline transition of ferricytochrome c. However, there are some structural similarities between the acid form of the heme protein stable below pH 2.5 in aqueous solution and the six-coordinated high-spin configuration of the bound ferricytochrome c at neutral pH (state II). This suggests that electrostatic interactions with the heteropolytungstates perturb the ionic equilibria of those amino acid side chains which are involved in the acid-induced transition leading to a significant upshift of the apparent pKa.  相似文献   

9.
The Ser82 and Phe82 variants of yeast iso-1 cytochrome c were studied by resonance Raman spectroscopy. In both oxidation states, distinct spectral changes were observed for some of those bands in the low-frequency region, which sensitively respond to conformational perturbations of the protein environment of the heme. These bands can be assigned to modes which include strong contributions of vibrations largely localized in the propionate-carrying pyrrole rings A and D. This indicates structural differences in the deeper part of the heme crevice, remote from the mutation site. This conclusion is in line with previous results from X-ray crystallography and NMR spectroscopy. No differences in the resonance-Raman spectra were observed which can be directly correlated with conformational changes of the heme pocket in the vicinity of the mutation site. Temperature-dependent resonance Raman experiments of the oxidized mutants revealed spectral changes which are closely related to those observed for cytochrome c upon adsorption to charged silver surfaces by surface-enhanced resonance Raman spectroscopy. These spectral changes can be attributed to an opening of the heme crevice accompanied by a weakening of the iron-methionine ligand bond. The temperature-dependent conformational transition occurs at approximately 30 degrees C for the Ser82 variant and at about 45 degrees C for the Phe82 variant, implying that the Phe----Ser substitution significantly lowers the thermal stability of the heme pocket. The reduced forms of both mutants are stable up to 65 degrees C.  相似文献   

10.
Resonance Raman spectra are reported for single crystals of cytochrome c peroxidase (CCP) mutants, taken by using a microscope equipped with a variable-temperature stage. The spectra are similar to those observed for the mutant proteins in solution, but there are detectable differences having to do with the coordination and spin state of the heme. The Asn-235 mutant contains a mixture of six-coordinate high- and low-spin states with a detectably higher fraction of the former than in solution. Upon cooling even to 223 K, the heme is converted mostly to the low-spin form. The Phe-191 mutant likewise shows a high/low-spin six-coordinate mixture, together with a preponderant population of five-coordinate heme. Upon cooling, the high-spin six-coordinate population converts immediately to the low-spin form, while the five-coordinate population does so more slowly. This behavior is intermediate between that of native CCP and the Asn-235 mutant, consistent with an ancillary role for the normal Trp-191-Asp-235 H-bond in the proximal anchoring of the heme Fe. The Phe-51 mutant shows a dominant high-spin five-coordinate heme population in the single crystal, whereas in solution the six-coordinate form is dominant. This difference is mimicked by adding 2-methyl-2,4-pentanediol (MPD) to the solution and is attributed to the dehydrating effect of MPD, which is present during crystallization. Upon lowering the temperature, the five-coordinate heme converts partially to a six-coordinate high-spin form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Homocysteine (Hcy)-thiolactone mediates a post-translational incorporation of Hcy into protein in humans. Protein N-homocysteinylation is detrimental to protein structure and function and is linked to pathophysiology of hyperhomocysteinemia observed in humans and experimental animals. The modification by Hcy-thiolactone can be detrimental directly by affecting the function of an essential lysine residue or indirectly by interfering with the function of other essential residues or cofactors. Previous work has shown that cytochrome c is very sensitive to Hcy-thiolactone, which causes formation of N-Hcy-cytochrome c multimers. However, it was unclear what sites in cytochrome c were prone to Hcy attachment and whether N-linked Hcy can affect the structure and redox function of cytochrome c. Here we show that 4 lysine residues (Lys8 or -13, Lys86 or -87, Lys99, and Lys100) of cytochrome c are susceptible to N-homocysteinylation. We also show that N-homocysteinylation of 1 mol of lysine/mol of protein affects the redox state of the heme ligand of cytochrome c by rendering it reduced. The modification causes subtle structural changes, manifested as increased resistance of the N-Hcy-cytochrome c to proteolysis by trypsin, chymotrypsin, and Pronase. However, no major secondary structure perturbations were observed as shown by circular dichroism spectroscopy. Our data illustrate how N-homocysteinylation can interfere with the function of heme-containing proteins.  相似文献   

12.
Complex formation between ferricytochrome c peroxidase (CCP) and ferricytochrome c from yeast [cyt(Y)] and horse heart [cyt(H)] was studied by resonance Raman spectroscopy. On the basis of a detailed spectral analysis of the free proteins, it was possible to attribute changes in the spectra of the complexes to the individual proteins. At pH 7.0 both cyt(Y) and cyt(H) binding induces an increase in the six-coordinate low-spin configuration of CCP from 9% to 19% at the expense of the five-coordinate high-spin state, which drops from 84% to 74%. In the free and complexed state, CCP exhibits a constant fraction of the six-coordinate high-spin form (approximately 7%). In addition to affecting the coordination state, there is also a cyt-specific structural response of CCP to complexation. In the cyt(Y)-CCP complex, the peripheral vinyl and propionate substituents of CCP are more rigidly fixed in the protein matrix, whereas binding of cyt(H) only slightly perturbs the conformations of these side chains. The biological significance of the conformational changes in CCP are discussed. In contrast to CCP, there are no detectable structural changes in either cyt(Y) or cyt(H) upon complex formation.  相似文献   

13.
14.
Cytochrome c release from mitochondria induces caspase activation in cytosols; however, it is unclear whether the redox state of cytosolic cytochrome c can regulate caspase activation. By using cytosol isolated from mammalian cells, we find that oxidation of cytochrome c by added cytochrome oxidase stimulates caspase activation, whereas reduction of cytochrome c by added tetramethylphenylenediamine (TMPD) or yeast lactate dehydrogenase/cytochrome c reductase blocks caspase activation. Scrape-loading of cells with this reductase inhibited caspase activation induced by staurosporine. Similarly, incubating intact cells with ascorbate plus TMPD to reduce intracellular cytochrome c strongly inhibited staurosporine-induced cell death, apoptosis, and caspase activation but not cytochrome c release, indicating that cytochrome c redox state can regulate caspase activation. In homogenates from healthy cells cytochrome c was rapidly reduced, whereas in homogenates from apoptotic cells added cytochrome c was rapidly oxidized by some endogenous process. This oxidation was prevented if mitochondria were removed from the homogenate or if cytochrome oxidase was inhibited by azide. This suggests that permeabilization of the outer mitochondrial membrane during apoptosis functions not just to release cytochrome c but also to maintain it oxidized via cytochrome oxidase, thus maximizing caspase activation. However, this activation can be blocked by adding TMPD, which may have some therapeutic potential.  相似文献   

15.
Ferricytochrome c can be converted to the partially folded A-state at pH 2.2 in the presence of 1.5 M NaCl. The structure of the A-state has been studied in comparison with the native and unfolded states, using resonance Raman spectroscopy with visible and ultraviolet excitation wavelengths. Spectra obtained with 200 nm excitation show a decrease in amide II intensity consistent with loss of structure for the 50s and 70s helices. The 230-nm spectra contain information on vibrational modes of the single Trp 59 side chain and the four tyrosine side chains (Tyr 48, 67, 74, and 97). The Trp 59 modes indicate that the side chain remains in a hydrophobic environment but loses its tertiary hydrogen bond and is rotationally disordered. The tyrosine modes Y8b and Y9a show disruption of tertiary hydrogen bonding for the Tyr 48, 67, and 74 side chains. The high-wavenumber region of the 406.7-nm resonance Raman spectrum reveals a mixed spin heme iron atom, which arises from axial coordination to His 18 and a water molecule. The low-frequency spectral region reports on heme distortions and indicates a reduced degree of interaction between the heme and the polypeptide chain. A structural model for the A-state is proposed in which a folded protein subdomain, consisting of the heme and the N-terminal, C-terminal, and 60s helices, is stabilized through nonbonding interactions between helices and with the heme.  相似文献   

16.
17.
Resonance Raman (RR) and absorption spectroscopic studies of purified rabbit liver cytochromes P-450 show that the form 2 isomer (LM2) but not the form 4 isomer (LM4) forms a long-lived complex with halothane after dithionite reduction, absorbing light at 470 nm, in which ferric 6-coordinated heme iron in the low-spin configuration is liganded to 2-chloro-1,1-difluoroethylene. The RR data exclude the possibility that the CF3CHCl- carbanion is a ligand and are consistent with the involvement of an active-site pocket in the cytochrome P-450 polypeptide.  相似文献   

18.
19.
Poly(dA).poly(dT) and DNA duplex with four or more adenine bases in a row exhibits a broad, solid-state structural premelting transition at about 35 degrees C. The low-temperature structure is correlated with the phenomena of "bent DNA." We have conducted temperature-dependent ultraviolet resonance Raman measurements of the structural transition using poly(dA).poly(dT) at physiological salt conditions, and are able to identify, between the high and low temperature limits, changes in the vibrational frequencies associated with the C4 carbonyl stretching mode in the thymine ring and the N6 scissors mode of the amine in the adenine ring of poly(dA).poly(dT). This work supports the model that the oligo-dA tracts' solid-state structural premelting transition is due to a set of cross-stand bifurcated hydrogen bonds between consecutive dA. dT pairs.  相似文献   

20.
Attenuated total reflection (ATR) spectroscopy brings an added dimension to studies of structural changes of cytochrome c oxidase (CcO) because it enables the recording of reaction-induced infrared difference spectra under a wide variety of controlled conditions (e.g. pH and chemical composition), without relying on light or potentiometric changes to trigger the reaction. We have used the ATR method to record vibrational difference spectra of CcO with reduction induced by flow-exchange of the aqueous buffer. Films of CcO prepared from Rhodobacter sphaeroides and beef heart mitochondria by reconstitution with lipid were adhered to the internal reflection element of the ATR device and retained their full functionality as evidenced by visible spectroscopy and time-resolved vibrational spectroscopy. These results demonstrate that the technique of perfusion-induced Fourier-transform infrared difference spectroscopy can be successfully applied to a large, complex enzyme, such as CcO, with sufficient signal/noise to probe vibrational changes in individual residues of the enzyme under various conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号