首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemically generated dimers of N′-methylnicotinamide and NAD+ both undergo photooxidation on irradiation at 254 nm in aqueous medium to yield the respective parent monomers. For the NAD dimer the quantum yield for photodissociation was about 0.01, whether irradiated at 254 nm or at wavelengths to the red of 320 nm. Irradiation at the latter wavelengths, where the NAD+ monomer itself does not absorb and is not photosensitive, led to quantitative regeneration of coenzyme activity in the alcohol dehydrogenase system. The photodissociation reaction exhibited no oxygen effect. The photochemically generated dimer of N′-methylnicotinamide was also photooxidized to the parent monomer by irradiation at 254 nm at pH 9.5. The foregoing process of electrochemical (or photochemical) reduction and photochemical oxidation, comprising a closed cycle of electron and proton transport, is similar to that previously observed for a number of pyrimidine analogs. Furthermore, the NAD dimer is a substrate of snake venom nucleotide pyrophosphatase and is hydrolyzed to release NMN dimer which, on irradiation at 254 nm, also undergoes photooxidation to the parent NMN+ monomer. A mechanism for the photooxidation reaction is formulated and relevant biological implications of the foregoing are presented.  相似文献   

2.
Kanwar R  Balasubramanian D 《Biochemistry》2000,39(48):14976-14983
We have carried out conformational and stability studies on three proteins that have previously been shown to undergo dityrosine (DT) cross-linking. They include the monomers and dimers of DT-cross-linked calmodulin and the dimers of bovine pancreatic ribonuclease A and bovine eye lens gammaB-Crystallin. In each of these cases, we find the secondary and tertiary structure of the parent protein to be largely maintained. The DT dimer is, however, weaker than the parent. In this sense, the properties of these DT dimers are somewhat similar to those of glutaraldehyde-cross-linked protein crystals. In contrast, the intramolecularly DT-linked monomeric protein that we studied (DT monomer of calmodulin) is seen to have suffered greater changes in its conformation and stability. These results gain significance in light of the growing identification of DT formation as a marker of oxidative stress, aging, and disease.  相似文献   

3.
Air-regenerated monomers of bovine seminal ribonuclease have been found capable of reassociating into native dimers, whereas monomers refolded in the presence of a glutathione redox mixture do not reassociate into dimers [Smith, K. G., D'Alessio, G. and Schaffer, S. W. (1978) Biochemistry 17, 2633-2638]. The crucial step in the process of regeneration of dimers is an isomerization step, which the newly refolded monomers undergo in order to reassociate into dimers. The two sulfhydryls at sequence positions 31 and 32 of the seminal RNAase chain, forming in the native dimer the intersubunit disulfides, have been found to have an important role in the refolding of the monomeric intermediates, as well as in the regeneration of dimers.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 proteases are dimers of identical subunits. We made a construct for the expression of recombinant one-chain HIV-2 protease dimer, which, like the previously described one-chain HIV-1 protease dimer, is fully active. The constructs for the one-chain dimers of HIV-1 and HIV-2 proteases were modified to produce hybrid one-chain dimers consisting of both HIV-1 and HIV-2 protease monomers. Although the monomers share only 47.5% sequence identity, the hybrid one-chain dimers are fully active, suggesting that the folding of both HIV-1 and HIV-2 protease monomers is functionally similar.  相似文献   

5.
6.
7.
Two major dimers are generated during the folding/oxidation of inclusion bodies of recombinant bovine somatotropin (bST). These dimers represent the major part of the inactive high molecular weight species that are formed in this process. The structures of the two dimers are unambiguously determined by peptide mapping using trypsin, thrombin cleavage, and selective DTT reduction experiments. Results indicate that the formation of both dimers involves the large disulfide loop cysteines. The latter-eluting dimer from RP-HPLC, previously reported as a large loop concatenated dimer, was revised to be an antiparallel disulfide-linked dimer. On the other hand, the first eluting dimer is a concatenane in which two monomers are held together by the interlocking of the two large disulfide loops.  相似文献   

8.
The pathway by which the tetrameric protein transthyretin dissociates   总被引:1,自引:0,他引:1  
Foss TR  Wiseman RL  Kelly JW 《Biochemistry》2005,44(47):15525-15533
The homotetrameric protein transthyretin (TTR) must undergo rate-limiting dissociation to its constituent monomers in order to enable partial denaturation that allows the process of amyloidogenesis associated with human pathology to ensue. The TTR quaternary structure contains two distinct dimer interfaces, one of which creates the two binding sites for the natural ligand thyroxine. Tetramer dissociation could proceed through three distinct pathways; scission into dimers along either of the two unique quaternary interfaces followed by dimer dissociation represents two possibilities. Alternatively, the tetramer could lose monomers sequentially. To elucidate the TTR dissociation pathway, we employed two different TTR constructs, each featuring covalent attachment of proximal subunits. We demonstrate that tethering the A and B subunits of TTR with a disulfide bond (as well as the symmetrically disposed C and D subunits) allows urea-mediated dissociation of the resulting (TTR-S-S-TTR)(2) construct, affording (TTR-S-S-TTR)(1) retaining a stable 16-stranded beta-sheet structure that is equivalent to the dimer not possessing a thyroid binding site. In contrast, linking the A and C subunits employing a peptide tether (TTR-L-TTR)(2) affords a kinetically stable quaternary structure that does not dissociate or denature in urea. Both tethered constructs and wild-type TTR exhibit analogous stability based on guanidine hydrochloride denaturation curves. The latter denaturant can denature the tetramer, unlike urea, which can only denature monomeric TTR; hence urea requires dissociation to monomers to function. Under native conditions, the (TTR-S-S-TTR)(2) construct is able to dissociate and incorporate subunits from labeled WT TTR homotetramers at a rate equivalent to that exhibited by WT TTR. In contrast, the (TTR-L-TTR)(2) construct is unable to exchange any subunits, even after 180 h. All of the data presented herein and elsewhere demonstrate that the pathway of TTR tetramer dissociation occurs by scission of the tetramer along the crystallographic C(2) axis affording AB and CD dimers that rapidly dissociate into monomers. Determination of the mechanism of dissociation provides an explanation for why small molecules that bind at the AB/CD dimer-dimer interface impose kinetic stabilization upon TTR and disease-associated variants thereof.  相似文献   

9.
The replication initiator protein, π, plays an essential role in the initiation of plasmid R6K replication. Both monomers and dimers of π bind to iterons in the γ origin of plasmid R6K, yet monomers facilitate open complex formation, while dimers, the predominant form in the cell, do not. Consequently, π monomers activate replication, while π dimers inhibit replication. Recently, it was shown that the monomeric form of π binds multiple tandem iterons in a strongly cooperative fashion, which might explain how monomers outcompete dimers for replication initiation when plasmid copy number and π supply are low. Here, we examine cooperative binding of π dimers and explore the role that these interactions may have in the inactivation of γ origin. To examine π dimer/iteron interactions in the absence of competing π monomer/iteron interactions using wild-type π, constructs were made with key base changes to each iteron that eliminate π monomer binding yet have no impact on π dimer binding. Our results indicate that, in the absence of π monomers, π dimers bind with greater cooperativity to alternate iterons than to adjacent iterons, thus preferentially leaving intervening iterons unbound and the origin unsaturated. We discuss new insights into plasmid replication control by π dimers.  相似文献   

10.
The Lhca antenna complexes of photosystem I (PSI) have been characterized by comparison of native and recombinant preparations. Eight Lhca polypeptides have been found to be all organized as dimers in the PSI-LHCI complex. The red emission fluorescence is associated not only with Lhca1-4 heterodimer, but also with dimers containing Lhca2 and/or Lhca3 complexes. Reconstitution of Lhca1 and Lhca4 monomers as well as of the Lhca1-4 dimer in vitro was obtained. The biochemical and spectroscopic features of these three complexes are reported. The monomers Lhca1 and Lhca4 bind 10 Chls each, while the Chl a/b ratio is lower in Lhca4 as compared to Lhca1. Three carotenoid binding sites have been found in Lhca1, while only two are present in Lhca4. Both complexes contain lutein and violaxanthin while beta-carotene is selectively bound to the Lhca1-4 dimer in substoichiometric amounts upon dimerization. Spectral analysis revealed the presence of low energy absorption forms in Lhca1 previously thought to be exclusively associated with Lhca4. It is shown that the process of dimerization changes the spectroscopic properties of some chromophores and increases the amplitude of the red absorption tail of the complexes. The origin of these spectroscopic features is discussed.  相似文献   

11.
Phosphorylated ERK2 has an increased capacity to form homodimers relative to unphosphorylated ERK2. We have characterized the nature of the ERK2 dimer and have mutated residues in the crystal dimer interface to examine the impact of dimerization on ERK2 activity. Analysis of the mutants by gel filtration indicates that at least five residues must be mutated simultaneously to produce an ERK2 mutant that is predominantly monomeric. Mutants, whether monomers or dimers, have specific protein kinase activities under fixed assay conditions that are roughly equivalent to wild-type ERK2. The ratio of dimers to monomers is increased as the salt concentration increases, consistent with a strong hydrophobic contribution to the energy of dimer formation. ERK2 dimerization also requires divalent cations. Sedimentation analysis indicates that the related c-Jun N-terminal kinase SAPKalphaI/JNK2 also forms dimers, but dimerization displays no dependence on phosphorylation; the unphosphorylated and phosphorylated forms of the kinase behave similarly, with low micromolar dimer dissociation constants.  相似文献   

12.
Band 3 (Mr = 95,000), the anion transport protein of human erythrocyte membranes exists primarily as a dimer in solutions of nonionic detergents such as octaethylene glycol mono-n-dodecyl ether (C12E8). The role of the oligomeric structure of Band 3 in the binding of [14C]4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS), an inhibitor of anion transport (Ki = 1-2 microM), was studied by characterizing the interaction of BADS with dimers and monomers of Band 3 covalently attached to p-mercuribenzoate-Sepharose 4B. BADS bound to matrix-bound Band 3 dimers with an affinity of approximately 3 microM at a stoichiometry of 1 BADS molecule/Band 3 monomer, in agreement with the BADS binding characteristic of Band 3 in the membrane and in solutions of C12E8. Band 3 dimers could be attached to the matrix via one subunit by limiting the amount of p-chloromercuribenzoate on the Sepharose bead. Matrix-bound monomers were formed by dissociation of the dimers with dodecyl sulfate or guanidine hydrochloride. Complete removal of the denaturants allowed formation of refolded Band 3 monomers since the matrix-bound subunits could not reassociate. These refolded Band 3 monomers were unable to bind BADS. Release of the monomers from the matrix with 2-mercaptoethanol allowed reformation of dimers with recovery of the BADS binding sites. These results suggest that the dimeric structure of Band 3 is required for BADS binding and that the BADS binding sites may be at the interface between the two halves of the Band 3 dimer.  相似文献   

13.
Chicken erythrocyte chromatin was depleted of histones H1, H5, H2A and H2B. The resulting (H3/H4)-containing chromatin was digested with micrococcal nuclease to yield monomer, dimer, trimer etc. units, irregularly spaced on the DNA, with even-number multimers being more prominent. Sucrose density gradient centrifugation separated monomers and dimers (7.7 S and 10.5 S). Sodium dodecyl sulphate gel electrophoresis and cross-linking indicated: the monomer contains 50-base-pair (bp), 60-bp and 70-bp DNA and the dimer 125-bp DNA; the monomer contains a tetramer and the dimer an octamer of H3 and H4. Partial association of monomer units to dimers inhibits structural studies of monomers. The internal structure of the dimer, i.e. and (H3/H4)4-125-bp-DNA particle, was studied using circular dichroism, thermal denaturation and nuclease digestion. Both micrococcal nuclease and DNase I digestion indicate that, unlike core particles, accessible sites occur in the centre of the particle and it is concluded that the (H3/H4)4-125-bp-DNA particle is not a 'pseudo-core particle' in which the 'extra' H3 and H4 replace H2A and H2B. It is proposed that the octamer particle is formed by the sliding together of two 'monomer' units, each containing the (H3/H4)2 tetramer and 70 bp of DNA. Excision of this dimer unit with micrococcal nuclease results in the loss of 10 readily digestible base pairs at each end, leaving 125 bp.  相似文献   

14.
We have investigated the mechanism and the evolutionary pathway of protein dimerization through analysis of experimental structures of dimers. We propose that the evolution of dimers may have multiple pathways, including (1) formation of a functional dimer directly without going through an ancestor monomer, (2) formation of a stable monomer as an intermediate followed by mutations of its surface residues, and (3), a domain swapping mechanism, replacing one segment in a monomer by an equivalent segment from an identical chain in the dimer. Some of the dimers which are governed by a domain swapping mechanism may have evolved at an earlier stage of evolution via the second mechanism. Here, we follow the theory that the kinetic pathway reflects the evolutionary pathway. We analyze the structure-kinetics-evolution relationship for a collection of symmetric homodimers classified into three groups: (1) 14 dimers, which were referred to as domain swapping dimers in the literature; (2) nine 2-state dimers, which have no measurable intermediates in equilibrium denaturation; and (3), eight 3-state dimers, which have stable intermediates in equilibrium denaturation. The analysis consists of the following stages: (i) The dimer is divided into two structural units, which have twofold symmetry. Each unit contains a contiguous segment from one polypeptide chain of the dimer, and its complementary contiguous segment from the other chain. (ii) The division is repeated progressively, with different combinations of the two segments in each unit. (iii) The coefficient of compactness is calculated for the units in all divisions. The coefficients obtained for different cuttings of a dimer form a compactness profile. The profile probes the structural organization of the two chains in a dimer and the stability of the monomeric state. We describe the features of the compactness profiles in each of the three dimer groups. The profiles identify the swapping segments in domain swapping dimers, and can usually predict whether a dimer has domain swapping. The kinetics of dimerization indicates that some dimers which have been assigned in the literature as domain swapping cases, dimerize through the 2-state kinetics, rather than through swapping segments of performed monomers. The compactness profiles indicate a wide spectrum in the kinetics of dimerization: dimers having no intermediate stable monomers; dimers having an intermediate with a stable monomer structure; and dimers having an intermediate with a stable structure in part of the monomer. These correspond to the multiple evolutionary pathways for dimer formation. The evolutionary mechanisms proposed here for dimers are applicable to other oligomers as well.  相似文献   

15.
Dimeric interactions among anti- and pro-apoptotic members of the BCL-2 protein family are dynamically regulated and intimately involved in survival and death functions. We report the structure of a BCL-X(L) homodimers a 3D-domain swapped dimer (3DDS). The X-ray crystal structure demonstrates the mutual exchange of carboxy-terminal regions including BH2 (Bcl-2 homology 2) between monomer subunits, with the hinge region occurring at the hairpin turn between the fifth and sixth alpha helices. Both BH3 peptide-binding hydrophobic grooves are unoccupied in the 3DDS dimer and available for BH3 peptide binding, as confirmed by sedimentation velocity analysis. BCL-X(L) 3DDS dimers have increased pore-forming activity compared to monomers, suggesting that 3DDS dimers may act as intermediates in membrane pore formation. Chemical crosslinking studies of Cys-substituted BCL-X(L) proteins demonstrate that 3DDS dimers form in synthetic lipid vesicles.  相似文献   

16.
The Lhca antenna complexes of photosystem I (PSI) have been characterized by comparison of native and recombinant preparations. Eight Lhca polypeptides have been found to be all organized as dimers in the PSI-LHCI complex. The red emission fluorescence is associated not only with Lhca1-4 heterodimer, but also with dimers containing Lhca2 and/or Lhca3 complexes. Reconstitution of Lhca1 and Lhca4 monomers as well as of the Lhca1-4 dimer in vitro was obtained. The biochemical and spectroscopic features of these three complexes are reported. The monomers Lhca1 and Lhca4 bind 10 Chls each, while the Chl a/b ratio is lower in Lhca4 as compared to Lhca1. Three carotenoid binding sites have been found in Lhca1, while only two are present in Lhca4. Both complexes contain lutein and violaxanthin while β-carotene is selectively bound to the Lhca1-4 dimer in substoichiometric amounts upon dimerization. Spectral analysis revealed the presence of low energy absorption forms in Lhca1 previously thought to be exclusively associated with Lhca4. It is shown that the process of dimerization changes the spectroscopic properties of some chromophores and increases the amplitude of the red absorption tail of the complexes. The origin of these spectroscopic features is discussed.  相似文献   

17.
1. The hemocyanin of the bivalve, Yoldia limatula (Say) was found by light-scattering to have a mol. wt of 8.0 +/- 0.6 x 10(6). Mass measurements by scanning transmission electron microscopy (STEM) gave a particle mass of 8.25 +/- 0.42 x 10(6) for the native particle and 4.09 +/- 0.20 x 10(6) for the half-molecule. 2. The hemocyanin subunits fully dissociated in 8.0 M urea and 6.0 M GdmCl at pH 8.0, and at pH 11.0, 0.01 M EDTA have mol. wts of 4.38 x 10(5), 4.22 x 10(5) and 4.71 x 10(5), close to one-twentieth of the parent molecular weight of Y. limatula hemocyanin and most gastropod hemocyanins. 3. Analyses of the urea dissociation transitions studied at pH 8.0, 1 x 10(-2) M Mg2+, 1 x 10(-2) M Ca2+ and pH 8.0, 3 x 10(-3) M Ca2+ suggest few hydrophobic amino acid groups, of the order of 10 to 15 at the contact areas of each half-molecule or decamer. 4. The further dissociation of the decamers to dimers and the dimers to monomers indicates the presence of a larger number of amino acid groups of ca 35-40/dimer and 100-120/monomer. 5. This suggests hydrophobic stabilization of the dimer to dimer and monomer to monomer contacts within the decamers, as observed with other molluscan hemocyanins.  相似文献   

18.
Or E  Rapoport T 《FEBS letters》2007,581(14):2616-2620
The ATPase SecA is involved in post-translational protein translocation through the SecY channel across the bacterial inner membrane. SecA is a dimer that can dissociate into monomers with translocation activity. Here, we have addressed whether dissociation of the SecA dimer is required for translocation. We show that a dimer in which the two subunits are cross-linked by disulfide bridges is inactive in protein translocation, translocation ATPase, and binding to a lipid bilayer. In contrast, upon reduction of the disulfide bridges, the resulting monomers regain these activities. These data support the notion that dissociation of SecA dimers into monomers occurs during protein translocation.  相似文献   

19.
The EGF receptor has seven different cognate ligands. Previous work has shown that these different ligands are capable of inducing different biological effects, even in the same cell. To begin to understand the molecular basis for this variation, we used luciferase fragment complementation to measure ligand-induced dimer formation and radioligand binding to study the effect of the ligands on subunit-subunit interactions in EGF receptor (EGFR) homodimers and EGFR/ErbB2 heterodimers. In luciferase fragment complementation imaging studies, amphiregulin (AREG) functioned as a partial agonist, inducing only about half as much total dimerization as the other three ligands. However, unlike the other ligands, AREG showed biphasic kinetics for dimer formation, suggesting that its path for EGF receptor activation involves binding to both monomers and preformed dimers. EGF, TGFα, and betacellulin (BTC) appear to mainly stimulate receptor activation through binding to and dimerization of receptor monomers. In radioligand binding assays, EGF and TGFα exhibited increased affinity for EGFR/ErbB2 heterodimers compared with EGFR homodimers. By contrast, BTC and AREG showed a similar affinity for both dimers. Thus, EGF and TGFα are biased agonists, whereas BTC and AREG are balanced agonists with respect to selectivity of dimer formation. These data suggest that the differences in biological response to different EGF receptor ligands may result from partial agonism for dimer formation, differences in the kinetic pathway utilized to generate activated receptor dimers, and biases in the formation of heterodimers versus homodimers.  相似文献   

20.
We previously showed using a fluorescent analogue of cholesterol (NBD-cholesterol, or 25-[N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-methyl]amino]-27-norcholesterol), that cholesterol may exhibit local organization at low concentrations in membranes by the formation of transbilayer tail-to-tail dimers of cholesterol (Rukmini, R., Rawat, S.S., Biswas, S.C., Chattopadhyay, A., 2001. Biophys. J. 81, 2122-2134). In this report, we have monitored the microenvironmental features of cholesterol monomers and dimers utilizing wavelength-selective fluorescence spectroscopy. Our results utilizing red edge excitation shift (REES) and wavelength-dependent change in fluorescence anisotropy show that the microenvironment around the NBD moieties in the dimer form is more rigid possibly due to steric constraints imposed by the dimer conformation. These results provide new information and are relevant in understanding the organization of cholesterol in membranes at low concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号