首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FbxA is a novel member of a family of proteins that contain an F-box and WD40 repeats and that target specific proteins for degradation via proteasomes. In fruiting bodies formed from cells where the fbxA gene is disrupted (fbxA(-) cells), the spore mass fails to fully ascend the stalk. In addition, fbxA(-) slugs continue to migrate under environmental conditions where the parental strain immediately forms fruiting bodies. Consistent with this latter behaviour, the development of fbxA(-) cells is hypersensitive to ammonia, the signaling molecule that regulates the transition from the slug stage to terminal differentiation. The slug comprises an anterior prestalk region and a posterior prespore region and the fbxA mRNA is highly enriched in the prestalk cells. The prestalk zone of the slug is further subdivided into an anterior pstA region and a posterior pstO region. In fbxA(-) slugs the pstO region is reduced in size and the prespore region is proportionately expanded. Our results indicate that FbxA is part of a regulatory pathway that controls cell fate decisions and spatial patterning via regulated protein degradation.  相似文献   

2.
We have determined the proportions of the prespore and prestalk regions in Dictyostelium discoideum slugs by in situ hybridization with a large number of prespore- and prestalk-specific genes. Microarrays were used to discover genes expressed in a cell type-specific manner. Fifty-four prespore-specific genes were verified by in situ hybridization, including 18 that had been previously shown to be cell type specific. The 36 new genes more than doubles the number of available prespore markers. At the slug stage, the prespore genes hybridized to cells uniformly in the posterior 80% of wild-type slugs but hybridized to the posterior 90% of slugs lacking the secreted alkylphenone differentiation-inducing factor 1 (DIF-1). There was a compensatory twofold decrease in prestalk cells in DIF-less slugs. Removal of prespore cells resulted in cell type conversion in both wild-type and DIF-less anterior fragments. Thus, DIF-1 appears to act in concert with other processes to establish cell type proportions.  相似文献   

3.
The proportion of prestalk and prespore cells in Dictyostelium discoideum slugs is often cited as an example of "almost perfect" regulation. The pattern is similar over a very wide range of cell number; furthermore, removal of either of the cell types leads to compensatory transdifferentiation. Several studies of Dictyostelium fruiting bodies, however, have suggested that proportioning in Dictyostelium differs systematically from true constancy. We have confirmed this in the slug stage using a short-lived beta-galactosidase as a reporter of the prestalk specific ecmA gene expression: the prestalk proportion decreases from 24+/-5% in slugs of 10(3) cells to 10+/-3% when 10(5) cells are present. Regeneration experiments suggest that this difference is not due to a modulation of the proportioning set-point by size, as one might have expected; instead there appears to be a regulatory "tolerance zone" at all sizes. After amputation of the whole posterior region, transdifferentiation stops after the fraction of prestalk has been reduced from 100% to 28+/-20%, well above the initial value of 10+/-3%, while after anterior removal the transdifferentiation endpoint is about 10%. Most strikingly, we find no regulation at all after partial amputations of the prespore region. It seems that any prestalk proportion is stable between a approximately 10% lower threshold and a approximately 30% upper threshold. To explain this, we propose a regulation mechanism based on a negative feedback plus cell type bistability. In both intact and regenerating slugs we find that the slug morphology is regulated so that the length-to-width ratio of the anterior region is constant.  相似文献   

4.
Summary The sorting behavior of mixtures ofD. discoideum cells which had been developed for different lengths of time was examined. Cells developed for 4 and 8 h were mixed together and allowed to form slugs. Within the slugs, 8 h cells sorted to the anterior prestalk region while 4 h cells sorted to the posterior prespore region. These results indicate that the more developed a cell is, the more likely it is to become part of the prestalk zone in the slug. They are also consistent with the differential adhesion and chemotaxis hypotheses as a mechanism for cell sorting since cells become more adhesive and chemotactically responsive as development proceeds.  相似文献   

5.
We have analyzed a developmentally and spatially regulated prestalk-specific gene and a prespore-specific gene from Dictyostelium. The prestalk gene, pst-cathepsin, encodes a protein highly homologous to the lysosomal cysteine proteinases cathepsin H and cathepsin B. The prespore gene encodes a protein with some homology to the anti-bacterial toxin crambin and has been designated beejin. Using the lambda gtll system, we have made polyclonal antibodies directed against a portion of the protein encoded by pst-cathepsin and other antibodies directed against the beejin protein. Both antibodies stain single bands on Western blots. By immunofluorescence and Western blots, pst-cathepsin is not present in vegetative cells or developing cells during the first approximately 10 h of development. It then appears with a punctate distribution in a subset of developing cells. Beejin is detected only after approximately 15 h of development, also in a subset of cells. Pst-cathepsin is distributed in the anterior approximately 1/10 of migrating slugs and on the peripheral posterior surfaces of slugs. Beejin is distributed in the posterior region of slugs. Expression of both pst-cathepsin and beejin can be induced in subsets of isolated cultured cells by a combination of conditioned medium and extracellular cAMP in agreement with the regulation of the mRNAs encoding these proteins. We have used the antibodies as markers for cell type to examine the ontogeny and the spatial distribution of prestalk and prespore cells throughout multicellular development. Our findings suggest that prestalk cell differentiation is independent of position within the aggregate and that the spatial localization of prestalk cells within the multicellular aggregate arises from sorting of the prestalk cells after their induction. We have also found a class of cell in developing aggregates that contains neither the prestalk nor the prespore markers.  相似文献   

6.
Nature and distribution of the morphogen DIF in the Dictyostelium slug   总被引:11,自引:0,他引:11  
The Dictyostelium slug contains a simple anterior-posterior pattern of prestalk and prespore cells. It is likely that DIF, the morphogen which induces stalk cells, is involved in establishing this pattern. Previous work has shown that a number of distinct species of DIF are released by developing cells and that cell-associated DIF activity increases rapidly during the slug stage of development. In this paper we describe a comparison of the DIF extracted from slugs with the DIF released into the medium. Analysis by high-pressure liquid chromatography (HPLC) using different solvent systems shows that the major species of DIF activity extracted from slugs coelutes with DIF-1, the major species of released DIF and is similarly sensitive to sodium borohydride reduction. Since DIF specifically induces the differentiation of prestalk cells, the anterior cells of the slug, it could be anticipated that DIF is localized in the prestalk region. We have therefore determined the distribution of DIF within the slug. Migrating slugs from strain V12M2 were manually dissected into anterior one-third and posterior two-third fragments and the DIF activity extracted. Surprisingly, we found that DIF was not restricted to the prestalk fragment. Instead there appears to be a reverse gradient of DIF in the slug with at least twice the specific activity of total DIF in the prespore region than in the prestalk region.  相似文献   

7.
Cell sorting within the prestalk zone of Dictyostelium discoideum   总被引:2,自引:0,他引:2  
Abstract. The prestalk zone of slugs of Dictyostelium discoideum has been shown to contain three subregions in which the extracellular matrix genes ecmA and ecmB are differentially expressed; it is generally thought that these regions are defined by extracellular signals. Using β-galactosidase as a cell marker, we have shown that cells can sort specifically to all three regions. Cells from the posterior-prestalk zone ("prestalk 0 zone") which are injected into the slug tip move within 60 min back to their position of origin. When cells from the anterior prestalk zone (presumably containing a mixture of ecmA and ecmB expressers) are transplanted to the posterior prestalk zone, they move to the tip ("prestalk A zone") within 1 h and about 30 min subsequently are often found in a cone-shaped region within the tip ("prestalk B zone"). Cells transplanted to their own positions do not move significantly within this period. Since the sub-regions of the prestalk zone can be defined by sorting, it is possible that they are normally formed in this way rather than by position-dependent signals. Cells transplanted without a change in anterior-posterior position and cells which have sorted back to their positions of origin eventually spread out throughout the prestalk zone. This suggests that sorting preferences of cells are respecified. When posterior prestalk cells are transplanted to the prespore zone, respecification of sorting preference is suspended until the cells return to the prestalk zone and anterior-prestalk cells acquire posterior-prestalk sorting preferences.  相似文献   

8.
The effects of low temperature (5°C) on cell-type conversion in whole slugs of Dictyostelium discoideum and their anterior prestalk- and posterior prespore-isolates were examined immunohistochemically and electronmicroscopically. When slugs were incubated for nine days at 5°C, the proportion of cells containing spore-antigens increased from about 75% to 85%. More important, the proportion of prespore and spore cells increased from about 3% to 40% in anterior prestalk isolates incubated at 5°C for 12 days, but no cell-type conversion from prespore to prestalk cells occurred in posterior prespore isolates. Therefore, the mechanism regulating the proportions of cells that operates at 21 °C does not operate at low temperature. The cells with full competence for stalk differentiation could change into stalk cells even at 5°C, because a short stalk was always formed when early culminants were transferred to low temperature. The effects of low temperature on several sequential steps of cell differentiation are discussed on the basis of these findings. The ultrastructural characteristics during the process of cell-type conversion are also described.  相似文献   

9.
Abstract. Conversion of prestalk cells to prespore cells was investigated in normally proportioned as well as prestalk-enriched cell populations under two different conditions: in slugs migrating on agar plates and in suspension cultures of dissociated slug cells in the presence of cAMP. In most experiments, prestalk cells labelled with a fluorescent dye (TRITC) and unlabelled prespore cells were combined together by grafting (for migrating slugs) or by mixing (for suspension cultures) to distinguish conversion of prestalk cells to prespore cells. In both migrating and dissociated slugs, minimal conversion of prestalk to prespore cells was observed when the proportion of prespore cells in the whole population was maintained at a normal level. When the prespore proportion in the initial population was lowered, a considerable fraction of prestalk cells underwent cell-type conversion to become prespore cells or spores. These results indicate that the presence of prespore cells somehow prevents prestalk cells from becoming prespore.  相似文献   

10.
SmdA is a Dictyostelium orthologue of the SET/MYND chromatin re-modelling proteins. In developing structures derived from a null mutant for smdA (a smdA- strain), prestalk patterning is normal, but using a prespore lacZ reporter fusion, there is ectopic accumulation of beta-galactosidase in the prestalk region. As wild type slugs migrate, there is continual forward movement and re-differentiation of prespore cells into prestalk cells. Thus, a potential explanation for the ectopic reporter localization in smdA null prestalk cells is an increased rate of re-differentiation and anterior movement of prespore cells. In support of this notion, analysis of an unstable lacZ reporter, driven by the prespore promoter, reveals a normal staining pattern in the smdA- strain. We suggest that one or more genes regulated by SmdA acts to repress prespore re-specification.  相似文献   

11.
Abstract. We show that the anterior, prestalk region of the Dictyostelium slug contains cells which express, or have expressed, a prespore-specific marker. We term these cells "prespore-like cells" (PLC). In newly formed slugs there is a sharp prespore/prestalk boundary, with very few PLC, but after several days of migration the clear demarcation between prespore and prestalk zones breaks down because the number of PLC increases dramatically. This is consistent with previous observations showing there to be rapid interchange of cells between the prestalk and prespore regions. This is not, however, their only source, as a scattering of PLC appear when separate prestalk and prespore regions first become apparent at the time of tip formation. Also, at culmination, there is respecification of "prespore" cells at the pre-stalk/prespore boundary to form part of the mature stalk. The existence of these cells, and of PLC, may explain why we find prespore-specific mRNAs in mature stalk cells.  相似文献   

12.
Ammonia appears to be an important regulatory signal for several aspects of the Dictyostelium life cycle. The postulated role of ammonia in the determination of the prespore pathway in cells of the slug stage has led us to examine the effect of ammonia on the prestalk/prespore ratio of migrating slugs. In the presence of 10(-3) M ammonium chloride, the volume of the prestalk region decreases by 40.8%. The kinetics of the process make it unlikely that this is due to a shift in the differentiation pathway. A test of the hypothesis that the decrease in volume of the prestalk region is due to the conversion of prestalk cells to anterior-like cells shows that the percent of anterior-like cells in the posterior region increases by the amount predicted by the hypothesis. This suggests that ammonia may be the molecular signal, produced by the tip, that prevents anterior-like cells from chemotactically migrating to the tip and thereby becoming anterior cells. The effect of enzymatic removal of ammonia from vitally stained migrating slugs is the appearance of a series of dark stripes beginning at the posterior end and progressing forward. We interpret this as a result of progressive removal of anterior-like cells from tip dominance and essentially as the formation of new potential tips. Indeed, in a few cases one or even two of the stripes separate from the posterior of the cell mass and form small fruiting bodies. We consider the phenomenon of stripe formation further evidence that the tip acts on anterior-like cells through ammonia.  相似文献   

13.
Formation of the prestalk-prespore pattern in Dictyostelium was investigated in slugs and submerged clumps of cells. Prestalk and prespore cells were identified by staining with vital dyes, which are shown to be stable cell markers. Dissociated slug cells reaggregate and form slugs that contain a prestalk-prespore pattern indistinguishable from the original pattern. The pattern forms by sorting out of stained prestalk cells from unstained prespore cells. Sorting also occurs in clumps of dissociated slug cells submerged in liquid or agar. A pattern arises in 2 h in which a central core of stained cells is surrounded by a periphery of unstained cells. Sorting appears to be due to differential chemotaxis of stained and unstained cells to cAMP since exogenous cAMP (>10−7 M) reverses the normal direction of sorting-out such that stained cells sort to the periphery of the clumps.
Isolated portions of slugs regenerate a new prestalk-prespore pattern. Posterior isolates regenerate a pattern within 2 h due to sorting of a population of vitally stained 'anterior-like' cells present in posteriors. Anterior-like cells do not sort in intact slugs due to the influence of a diffusible inhibitor secreted by the anterior region. During posterior regeneration this signal is absent and anterior-like cells rapidly acquire the ability to sort. Anterior isolates regenerate a staining pattern more slowly than posterior isolates by a process that requires conversion of stained prestalk cells to unstained prespore cells.
The results suggest that pattern formation in Dictyostelium consists of two processes: establishment of appropriate proportions of two cell types and establishment of the pattern itself by a mechanism of sorting-out.  相似文献   

14.
The protein tyrosine phosphatase PTP1, which mediates reversible phosphorylation on tyrosine, has been shown to play an important regulatory role during Dictyostelium development. Mutants lacking PTP1 develop more rapidly than normal, while strains that overexpress PTP1 display aberrant morphology. However, the signalling pathways involved have not been characterised. In reexamining these strains, we have found that there is an inverse correlation between levels of PTP1 activity, the extent of tyrosine phosphorylation on Dictyostelium STATa after treatment with cAMP, and the proportion of the slug population exhibiting STATa nuclear enrichment in vivo. This suggests that PTP1 acts to attenuate the tyrosine phosphorylation of STATa and downstream STATa-mediated pathways. Consistent with this, we show that when PTP1 is overexpressed, there is increased expression of a prestalk cell marker at the slug posterior, a phenocopy of STATa null slugs. In ptp1 null strains, STATa tyrosine phosphorylation and nuclear enrichment in the slug anterior is increased. There is also a change in the prestalk to prespore cell ratio. Synergy experiments suggest that this is due to a cell-autonomous defect in forming the subset of prespore cells that are located in the anterior prespore region.  相似文献   

15.
We describe a method of separating prestalk and prespore cells of Dictyostelium discoideum slugs using a self-generating Percoll gradient. This method gives quantitative recovery of cells and good purity. Separated prestalk and prespore cells possess different levels of the enzymes UDP galactose :polysaccharide transferase, cAMP phosphodiesterase and glycogen phosphorylase. We have used this method, as well as mechanical dissection of slugs, to examine the fate of separated prestalk and prespore cells in Dictyostelium strains that are able to give rise to mature stalk and spore cells in cell monolayers. The results from such experiments provide direct evidence that prestalk and prespore cells from the migrating slug stage are programmed to differentiate into stalk and spore cells respectively.  相似文献   

16.
17.
P Schaap  M Wang 《Cell》1986,45(1):137-144
We present evidence for the hypothesis that in multicellular structures of Dictyostelium, production of adenosine by hydrolysis of cAMP near the tip region prevents both generation of competing tips and differentiation of prespore cells near the tip, and thus establishes a "prestalk" region. We demonstrate that adenosine affects the immunological prespore specific staining pattern in slugs in a manner opposite to cAMP:cAMP induces an increase of prespore antigen; adenosine induces a decrease. When endogenous adenosine is removed from slugs, prespore vacuoles are synthesized throughout the prestalk region. Adenosine was found to inhibit the induction of prespore differentiation by cAMP in an apparently competitive manner. It was also found that adenosine specifically increased the amount of tissue controlled by one tip, probably by inhibiting generation of competing oscillators. Removing endogenous adenosine from slugs resulted in a decrease of tip dominance.  相似文献   

18.
19.
We investigated the effect of LiCl on pattern formation and cAMP-regulated gene expression in Dictyostelium discoideum. In intact slugs, 5 mM LiCl induces an almost complete redifferentiation of prespore into prestalk cells. We found that LiCl acts by interfering with the transduction of extracellular cAMP to cell-type-specific gene expression; LiCl inhibits the induction of prespore-specific gene expression by cAMP, while it promotes the induction of prestalk-associated gene expression by cAMP. Our results indicate that two divergent pathways transduce the extracellular cAMP signal to, respectively, prestalk and prespore gene expression.  相似文献   

20.
We used microarrays carrying most of the genes that are developmentally regulated in Dictyostelium to discover those that are preferentially expressed in prestalk cells. Prestalk cells are localized at the front of slugs and play crucial roles in morphogenesis and slug migration. Using whole-mount in situ hybridization, we were able to verify 104 prestalk genes. Three of these were found to be expressed only in cells at the very front of slugs, the PstA cell type. Another 10 genes were found to be expressed in the small number of cells that form a central core at the anterior, the PstAB cell type. The rest of the prestalk-specific genes are expressed in PstO cells, which are found immediately posterior to PstA cells but anterior to 80% of the slug that consists of prespore cells. Half of these are also expressed in PstA cells. At later stages of development, the patterns of expression of a considerable number of these prestalk genes changes significantly, allowing us to further subdivide them. Some are expressed at much higher levels during culmination, while others are repressed. These results demonstrate the extremely dynamic nature of cell-type-specific expression in Dictyostelium and further define the changing physiology of the cell types. One of the signals that affect gene expression in PstO cells is the hexaphenone DIF-1. We found that expression of about half of the PstO-specific genes were affected in a mutant that is unable to synthesize DIF-1, while the rest appeared to be DIF independent. These results indicate that differentiation of some aspects of PstO cells can occur in the absence of DIF-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号