首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Cellular synthesis of peptide hormones requires PCs (prohormone convertases) for the endoproteolysis of prohormones. Antral G-cells synthesize the most gastrin and express PC1/3, 2 and 5/6 in the rat and human. But the cleavage sites in progastrin for each PC have not been determined. Therefore, in the present study, we measured the concentrations of progastrin, processing intermediates and alpha-amidated gastrins in antral extracts from PC1/3-null mice and compared the results with those in mice lacking PC2 and wild-type controls. The expression of PCs was examined by immunocytochemistry and in situ hybridization of mouse G-cells. Finally, the in vitro effect of recombinant PC5/6 on progastrin and progastrin fragments containing the relevant dibasic cleavage sites was also examined. The results showed that mouse G-cells express PC1/3, 2 and 5/6. The concentration of progastrin in PC1/3-null mice was elevated 3-fold. Chromatography showed that cleavage of the Arg(36)Arg(37) and Arg(73)Arg(74) sites were grossly decreased. Accordingly, the concentrations of progastrin products were markedly reduced, alpha-amidated gastrins (-34 and -17) being 25% of normal. Lack of PC1/3 was without effect on the third dibasic site (Lys(53)Lys(54)), which is the only processing site for PC2. Recombinant PC5/6 did not cleave any of the dibasic processing sites in progastrin and fragments containing the relevant dibasic processing sites. The complementary cleavages of PC1/3 and 2, however, suffice to explain most of the normal endoproteolysis of progastrin. Moreover, the results show that PCs react differently to the same dibasic sequences, suggesting that additional structural factors modulate the substrate specificity.  相似文献   

5.
This review is devoted to structure and properties of proprotein convertases (PCs), the intracellular Ca(2+)-dependent serine endoproteases of mammalia, that play the essential role in the processing of inactive protein precursors and their transforming into bioactive mature products. PCs are also implicated in development of a great variety of diseases including bacterial or viral infections and such pathologies as cancer, Alzheimer's disease, obesity and so on. Owing to these findings, PCs are considered as promising targets for design of their inhibitors and development of new potential therapeutic agents. Only several endogenous protein inhibitors are identified now for PCs: pro7B2 (Proprotein 7B2), the specific chaperon of PC2, granine-like precursor of neuroendocrine protein proSAAS, the selective ligand of PC1, and serpin Spn4A (Serine Proteinase Inhibitor) of Drosophila melanogaster that inhibits PC2 and furin. By the methods of site-directed mutagenesis, the bioengineered inhibitors of PCs were also designed. Structures and properties of protein or peptide fragments as inhibitors of PCs were also discussed. Particularly, the properties of polyarginines and small peptides containing pseudopeptide bond at the scissile site a suitable peptide substrate were described. The inhibitory activity of non-peptide compounds such as derivatives of andrographolid from Andrographis paniculata (K(i) = 2.6-200 microM against furin), certain complexes of pyridine analogs with ions of Cu2+ or Zn2+ inhibiting furin with IC50 = 5-10 microM, derivatives of 2,5-dideoxy-streptamine containing several guanidine groups (K(i) = 6-812 nM for furin) and also a number of dicoumarols (K(i) = 1-185 microM against furin) and some flavonoids (with K(i) = 5-230 microM for furin) were reflected in the article. The effects of enediynyl-amino acids derivatives or their peptides (K(i) = 40 nM against furin) were considered. Inhibition of PC2 by N-acylated bicyclic guanidines (K(i) = 3.3-10 microM) or derivatives of pyrrolidin bispyperazines (K(i) = 0.54-10 microM) are considered too. Some of synthesized derivatives may serve as lead compounds for design of the specific inhibitors for individual PCs.  相似文献   

6.
Abstract: Two experimental approaches were used to study the processing of chromogranin B and secretogranin II by prohormone convertases. In GH3 cells various prohormone convertases were overexpressed together with the substrate chromogranin B by use of a vaccinia virus infection system. PC1 appeared to be by far the most active enzyme and converted chromogranin B to several smaller molecules, including the peptide PE-11. In brain this peptide is cleaved physiologically from chromogranin B. Some processing of chromogranin B and formation of free PE-11 were also observed with PC2 and PACE4. Furin produced larger fragments, whereas PC5-A and PC5-B had negligible effects. As a second model, PC12 cells were stably transfected with PC1 or PC2 to investigate the processing of endogenous chromogranins. Both enzymes effectively cleaved chromogranin B and secretogranin II, liberating the peptides PE-11 and secretoneurin, respectively. However, in transfection experiments the ability to generate the free peptides was more pronounced with PC2 than with PC1. The extent of proprotein processing achieved by prohormone convertases apparently differed depending on the experimental system applied. This suggests that in vivo mechanisms to support and fine-tune the activity of the processing enzymes exist, which might be overlooked by using only one methodological approach.  相似文献   

7.
Melanin concentrating hormone (MCH) and neuropeptide EI (NEI) are two peptides produced from the same precursor in mammals, by cleavage at the Arg145-Arg146 site and the Lys129-Arg130 site, respectively. We performed co-localization studies to reveal simultaneously the expression of MCH mRNA and proconvertases (PCs) such as PC1/3 or PC2. In the rat hypothalamus, PC2 was present in all MCH neurons, and PC1/3 was present in about 15-20% of these cells. PC1/3 or PC2 was not found in MCH-positive cells in the spleen. In GH4C1 cells co-infected with vaccinia virus (VV):pro-MCH along with VV:furin, PACE4, PC1/3, PC2, PC5/6A, PC5/6B, or PC7, we observed only efficient cleavage at the Arg145-Arg146 site to generate mature MCH. Co-expression of pro-MCH together with PC2 and 7B2 resulted in very weak processing to NEI. Comparison of pro-MCH processing patterns in PC1/3- or PC2-transfected PC12 cells showed that PC2 but not PC1/3 generated NEI. Finally, we analyzed the pattern of pro-MCH processing in PC2 null mice. In the brain of homozygotic mutants, the production of mature NEI was dramatically reduced. In contrast, MCH content was increased in the hypothalamus of PC2 null mice. In the spleen, a single large MCH-containing peptide was identified in both wild type and PC2 null mice. Together, our data suggest that pro-MCH is processed differently in the brain and in peripheral organs of mammals. PC2 is the key enzyme that produces NEI, whereas several PCs may cleave at the Arg145-Arg146 site to generate MCH in neuronal cell types.  相似文献   

8.
Many of the protein precursors traversing the secretory pathway undergo cleavage at multibasic sites to generate their bioactive forms. The proprotein convertases (PCs), a family of subtilisin-like proteases, are the major endoproteases that serve this function. Genes encoding seven distinct members of this family have so far been characterized in vertebrates: furin, PC2, PC1/PC3, PC4, PACE4, PC5/PC6 and PC7/PC8/LPC. Multiple PC genes have also been cloned from a number of invertebrates, including Drosophila melanogaster and Caenorhabditis elegans. These findings suggest that gene duplication and diversification of the PCs have occurred throughout metazoan evolution. To investigate the structural and functional changes which have occurred during vertebrate development, we have analyzed the expression of PC genes in the protochordate amphioxus. We have previously shown that amphioxus express homologous PC2 and PC1/PC3 genes [Proc. Natl. Acad. Sci. USA 92 (1995) 3591]. Here we report the characterization of amphioxus cDNAs encoding proteases with a high degree of similarity to mammalian PC6. Three cDNAs encoding three PC6 isoforms differing only in their carboxy-terminal sequences were found, derived by alternative splicing. Two isoforms appear to be soluble enzymes, whereas the third contains a transmembrane hydrophobic segment and thus is likely to be membrane-bound. All three variants contain many repeats of a cysteine-rich motif that is found in several other PC family members. Thus, amphioxus, like the vertebrates, expresses two types of PCs, e.g., PC2 and PC1/PC3 which function in the regulated secretory pathway in neuroendocrine cells, and the more widely expressed PC6 which functions mainly in the constitutive pathway.  相似文献   

9.
Prohormone convertases (PCs) are proteinases that cleave inactive prohormones to biologically active peptides. Seven PCs have been identified; two of them, PC1/3 and PC2, have only been localized in neuroendocrine (NE) tissues; a third, furin, in both endocrine and exocrine tissues. We have studied the immunoreactivity of PC1/3, PC2 and furin in the four major NE cell types of the human pancreas by using double immunofluorescence techniques. The study also included the expression of NE secretory protein 7B2 (secretogranin V), a member of the granin family, which influences the function of PC2. The results showed that the three PCs and 7B2 were expressed only in endocrine pancreas, furin also in exocrine cells. Insulin (B) cells harboured PC1/3 and PC2, but not furin. Glucagon (A) cells were immunoreactive to all three PCs; all glucagon cells expressed PC2, but one subpopulation showed PC1/3 immunoreactivity and another furin. Only a few somatostatin (D) cells contained PC2, but no other proconvertase. Pancreatic polypeptide (PP) cells were non-reactive to all three PCs. 7B2 occurred only in insulin and glucagon cells. A varying co-localization pattern was observed between PCs and between PCs and 7B2, with the exception of PC1/3 and furin which were not co-localized. In conclusion, our study shows that PCs are localized in insulin and glucagon cells and do seem to be important in these cell types for processing of hormone and other protein precursors, especially chromogranins, but for the two other major cell types probably other enzymes are of importance.  相似文献   

10.
Damaj MI  Zheng J  Martin BR  Kuhar MJ 《Peptides》2006,27(8):2019-2023
CART peptides are found in brain and spinal cord areas involved in pain transmission. In the present study, we investigated the role of rat CART (55-102) in the modulation of chronic pain using models of chronic neuropathic (nerve injury model) and inflammatory (carrageenan test) pain models in the mouse after intrathecal administration. The results show that CART (55-102) was highly effective in reversing the hyperalgesia and allodynia signs of chronic neuropathic pain in a dose-related manner at doses (0.05-2 microg/mouse) that did not affect motor coordination of the animals. These effects lasted for at least 3 h after injection and were not blocked by naloxone, an opiate antagonist. Although CART (55-102) attenuated carrageenan-induced hyperalgesia, it failed to reduce the inflammation associated with this model. These results suggest the involvement of the CART peptides in the development of hyperalgesia and allodynia associated with neuropathic pain.  相似文献   

11.
12.
13.
14.
15.
16.
Dylag T  Rafalski P  Kotlinska J  Silberring J 《Peptides》2006,27(12):3183-3192
Synthetic derivative of C-terminal fragment of CART (55–102) with reduced thiol groups, [Abu86,94]CART (85–102)red, given together with amphetamine (5 mg/kg, s.c.) or cocaine (15 mg/kg, s.c.), reversed hyperlocomotion induced by these drugs at a dose of 0.1 μg but not at a higher dose. In the cerebral cortex homogenate, [Abu86,94]CART (85–102)red was nonspecifically cleaved from N- and C-termini. This peptide contains two chemically blocked Cys residues, and two others in reduced form. Concomitant with cleavage, rapid cyclization occurred. The newly formed cyclic peptides were stable. The cyclic peptide [Abu86,94]CART (85–102)ox failed to inhibit amphetamine- and cocaine-induced locomotor activity. The ability to inhibit the locomotor-stimulant activity of amphetamine was retained in [Abu86,88,94,101]CART (85–102), in which all Cys were replaced with 2-aminobutyric acid to prevent their pairing. Disulfide bridge formation may be an interesting mechanism that prevents proteolysis of [Abu86,94]CART (85–102)red and terminates its ability to reverse amphetamine-induced hyperlocomotion.  相似文献   

17.
Biologically active peptides are synthesized as larger inactive proprotein peptide precursors which are processed by the concerted action of a cascade of enzymes. Among the proprotein convertases, PC2 is widely expressed in neuro-endocrine tissues and has been proposed to be the major convertase involved in the biosynthesis of neuropeptides. In this study, we have examined the role of the Caenorhabditis elegans orthologue PC2/EGL-3 in the processing of proprotein peptide precursors. We recently isolated and identified 60 endogenous peptides in the nematode C. elegans by two-dimensional nanoscale liquid chromatography - quadrupole time-of-flight tandem mass spectrometry. In the present study, we compare the peptide profile of different C. elegans strains, including PC2/EGL-3 mutants. For this purpose, we used an offline approach in which HPLC fractions are analysed by a matrix-assisted laser desorption ionisation - time of flight mass spectrometer. This differential peptidomic approach unambiguously provides evidence for the role of PC2/EGL-3 in the processing of FMRFamide-like peptide (FLP) precursors and neuropeptide-like protein (NLP) precursors in nematodes.  相似文献   

18.
Bruzzaniti A  Mains RE 《Peptides》2002,23(5):863-875
Pro-hormone convertases PC1 and PC2 perform endoproteolytic cleavages of precursors in peptide-containing secretory granules. PC1 and PC2 are soluble, secreted with bioactive peptides. Evolutionarily related PCs have membrane tethers, not secreted. We tethered PC1 to the transmembrane-cytoplasmic domains (CD) of a granule enzyme (peptidylglycine-alpha-amidating monooxygenase; PAM) and Golgi-localized PC8. The tethered PC1 is far more stable to elevated temperature and denaturants than soluble PC1, and more active. Both tethers allow PC1 to visit the cell surface transiently, cleaving soluble molecules outside the cell. Both membrane-bound PC1 chimeras cleave membrane PAM into soluble active fragments when PAM is expressed on adjacent cells.  相似文献   

19.
The CART receptors: background and recent advances   总被引:1,自引:0,他引:1  
Vicentic A  Lakatos A  Jones D 《Peptides》2006,27(8):1934-1937
Previous evidence obtained from several behavioral and biochemical studies suggested the existence of multiple CART receptors. However, identification of CART receptor binding has been largely unsuccessful until recently. The first evidence of CART signaling properties came from a study demonstrating that CART 55-102 inhibited voltage-dependent intracellular calcium signaling. More recent studies showed CART-induced dose- and time-dependent activation of extracellular signal-regulated kinase (ERK) 1 and 2 in AtT20 cell line. The activation of ERK was blocked by pertussis toxin but not genisten suggesting the involvement of Gi/o linked cascade in CART's signaling properties in AtT20 cells. Shortly after these findings, the evidence of CART 61-102 specific binding was obtained from the same cell line. This study demonstrated that [(125)I]-CART 61-102 was displaced only by active CART peptide but not by inactive CART fragments or several other unrelated peptides or drugs. The [(125)I]-CART 61-102 binding was saturable and it had a high affinity for a single site in AtT20 cells. The binding was also dependent on time, pH, temperature and protein concentration. The average (+/-S.E.M.) B(max) and K(d) values were 101.4+/-8.8 fmol/mg protein and 21.9+/-8.0 pM, respectively. These data indicate the existence of specific CART receptor binding in AtT20 cells where CART signaling has been demonstrated. The identification of a receptor clone in these cells may help us elucidate CART receptors in other tissues. Because CART is implicated with several physiological functions including feeding, drug reward and stress, identification of a CART receptor would provide a novel target for the development of pharmacological tools and drugs for obesity and other disorders.  相似文献   

20.
We present the data and the technology, a combination of which allows us to determine the identity of proprotein convertases (PCs) related to the processing of specific protein targets including viral and bacterial pathogens. Our results, which support and extend the data of other laboratories, are required for the design of effective inhibitors of PCs because, in general, an inhibitor design starts with a specific substrate. Seven proteinases of the human PC family cleave the multibasic motifs R-X-(R/K/X)-R downward arrow and, as a result, transform proproteins, including those from pathogens, into biologically active proteins and peptides. The precise cleavage preferences of PCs have not been known in sufficient detail; hence we were unable to determine the relative importance of the individual PCs in infectious diseases, thus making the design of specific inhibitors exceedingly difficult. To determine the cleavage preferences of PCs in more detail, we evaluated the relative efficiency of furin, PC2, PC4, PC5/6, PC7, and PACE4 in cleaving over 100 decapeptide sequences representing the R-X-(R/K/X)-R downward arrow motifs of human, bacterial, and viral proteins. Our computer analysis of the data and the follow-on cleavage analysis of the selected full-length proteins corroborated our initial results thus allowing us to determine the cleavage preferences of the PCs and to suggest which PCs are promising drug targets in infectious diseases. Our results also suggest that pathogens, including anthrax PA83 and the avian influenza A H5N1 (bird flu) hemagglutinin precursor, evolved to be as sensitive to PC proteolysis as the most sensitive normal human proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号