首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 infections cause serious public health problems worldwide. The translocation intimin receptor (Tir) is responsible for adhesion and attaching and effacing lesions. In the current study, we used a mitomycin-treated mouse model to evaluate the efficacy of subcutaneous vs intranasal administration of the recombinant Tir as vaccine. Following immunization, mice were infected with E. coli O157:H7 and faces were monitored for shedding. Mice immunized intrasally with purified Tir proteins produced higher IgG and IgA titers in serum and feces, resulting in significant reductions in fecal shedding of EHEC O157 and higher a survival rate (92.9%), compared with subcutaneous or control immunizations. These results demonstrate the potential for the use of Tir proteins in mucosal vaccine formulations to prevent colonization and shedding of E. coli O157:H7. Therefore, purified Tir protects mice against EHEC challenge after intranasal immunization and is worth further clinical development as a vaccine candidate.  相似文献   

2.
Investigations were undertaken into optimizing the expression of Cestode parasite vaccine antigens in the bacterium, Escherichia coli to levels sufficient for mass production. A strategy to genetically engineer the antigens and improve their expression in E. coli was investigated. Plasmid constructs encoding truncated parasite antigens were prepared, leading to removal of N and C-terminal hydrophobic domains of the antigens. This approach was found to be an effective strategy for improving expression of the TSOL18 recombinant antigen of Taenia solium in E. coli. Clear demonstration that plasmid construct modification can be used to significantly improve heterologous expression in E. coli was shown for the EG95 antigen of Echinococcus granulosus. Removal of hydrophobic stretches of amino acids from the N and C termini of EG95 by genetic manipulation led to a substantial change in expression of the protein from an insoluble to a soluble form. The data demonstrate that the occurrence of hydrophobic regions in the antigens are a major feature that hindered their expression in E. coli. It was also shown that retaining a minimal protein domain (a single fibronectin type III domain) led to high level expression of functional protein that is antigenic and host protective. Two truncated antigens were combined from two species of parasite (EG95NC from E. granulosus and Tm18N from Taenia multiceps) and expressed as a single hybrid antigen in E. coli. The hybrid antigens were expressed at a high level and retained antigenicity of their respective components, thereby simplifying production of a multi-antigen vaccine. The findings are expected to have an impact on the preparation of recombinant Cestode vaccine antigens using E. coli, by increasing their utility and making them more amenable to large-scale production.  相似文献   

3.
We studied the adjuvant properties of micelles from nonionogenic detergents, liposome, and selenium nanoparticles containing extracellular and intracellular vaccine antigens of a weakly virulent α-hemolytic Escherichia coli B-5 strain used for the immunization of experimental animals. Triton X-100 was used as a nonionogenic detergent for micelle preparation. The liposomes were obtained on the basis of lecithin from a chicken egg and E. coli B-5 membrane lipids. Native lipoproteins of E. coli B-5 cells and peptides for the proteolytic hydrolysis of toxin-containing culture liquid were used as antigens for micelles and liposomes. The obtained data suggested that micelles, liposomes, and selenium nanoparticles can be used for immunization with cellular and extracellular E. coli antigens.  相似文献   

4.
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease and deaths among children in developing countries and the major cause of traveler's diarrhea (TD). Since surface protein colonization factors (CFs) of ETEC are important for pathogenicity and immune protection is mainly mediated by locally produced IgA antibodies in the gut, much effort has focused on the development of an oral CF-based vaccine. The most extensively studied ETEC candidate vaccine is the rCTB-CF ETEC vaccine, containing recombinantly produced cholera B subunit and the most commonly encountered ETEC CFs on the surface of whole inactivated bacteria. Initial clinical trials with this vaccine showed significant immune responses against the key antigens in different age groups in Bangladesh and Egypt and protection against more severe TD in Western travelers. However, when tested in a phase-III trial in Egyptian infants, the protective efficacy of the vaccine was found to be low, indicating the need to improve the immunogenicity of the vaccine, e.g., by increasing the levels of the protective antigens. This review describes different strategies for the construction of recombinant nontoxigenic E. coli and Vibrio cholerae candidate vaccine strains over-expressing higher amounts of ETEC CFs than clinical ETEC isolates selected to produce high levels of the respective CF, e.g., those ETEC strains which have been used in the rCTB-CF ETEC vaccine. Several different expression vectors containing the genes responsible for the expression and assembly of the examined CFs, all downstream of the powerful tac promoter, which could be maintained either with or without antibiotic selection, were constructed. Expression from the tac promoter was under the control of the lacI q repressor present on the plasmids. Following induction with isopropyl-β-d-thiogalactopyranoside, candidate vaccine strains over-expressing single CFs, unnatural combinations of two CFs, and also hybrid forms of ETEC CFs were produced. Specific monoclonal antibodies against the major subunits of the examined CF were used to quantify the amount of the surface-expressed CF by a dot-blot assay and inhibition ELISA. Oral immunization with formalin- or phenol-inactivated recombinant bacteria over-expressing the CFs was found to induce significantly higher antibody responses compared to immunization with the previously used vaccine strains. We therefore conclude that our constructs may be useful as candidate strains in an oral whole-cell inactivated CF ETEC vaccine.  相似文献   

5.
Pseudomonas aeruginosa outer membrane protein F was purified by extraction from polyacrylamide gels of cell envelope proteins of anEscherichia coli strain expressing the cloned gene for protein F. Antisera directed against protein F purified fromP. aeruginosa PAO1 reacted with thisE. coli strain by immunofluorescence assay and immunoblotting, whereas these antisera were nonreactive withE. coli strains lacking thePseudomonas protein F gene. The protein F purified from thisE. coli strain was used to immunize mice by intramuscular injection of 10 µg of protein F preparation on days 1 and 14, followed by burn and challenge of the mice on day 28. As compared with control mice immunized withE. coli K-12 lipopolysaccharide, immunization with theE. coli-derived protein F afforded significant protection against subsequent challenge with heterologous Fisher-Devlin immunotype 5 and 6 strains ofP. aeruginosa. Antisera from mice immunized with theE. coli-derived protein F reacted at bands corresponding to protein F and 2-mercaptoethanol-modified protein F upon immunoblotting against cell envelope proteins of the PAO1, immunotype 5, and immunotype 6 strains ofP. aeruginosa and theE. coli strain containing the cloned F gene, but failed to react at these sites in anE. coli strain lacking the F gene. These data demonstrate thatP. aeruginosa protein F produced inE. coli through genetic engineering techniques retains its vaccine efficacy in the complete absence of anyP. aeruginosa lipopolysaccharide.  相似文献   

6.
The non-toxic B subunit (CT-B) of cholera toxin from Vibrio cholerae is a strong immunogen and amplifies the immune reaction to conjugated antigens. In this work, a synthetic gene encoding for CT-B was expressed under control of a γ-zein promoter in maize seeds. Levels of CT-B in maize plants were determined via ganglioside dependent ELISA. The highest expression level recorded in T1 generation seeds was 0.0014% of total aqueous soluble protein (TASP). Expression level of the same event in the T2 generation was significantly increased to 0.0197% of TASP. Immunogenicity of maize derived CT-B was evaluated in mice with an oral immunization trial. Anti-CTB IgG and anti-CTB IgA were detected in the sera and fecal samples of the orally immunized mice, respectively. The mice were protected against holotoxin challenge with CT. An additional group of mice was administrated with an equal amount (5 μg per dose each) of mixed maize-derived CT-B and LT-B (B subunit of E. coli heat labile toxin). In the sera and fecal samples obtained from this group, the specific antibody levels were enhanced compared to either the same or a higher amount of CT-B alone. These results suggest that a synergistic action may be achieved using a CT-B and LT-B mixture that can lead to a more efficacious combined vaccine to target diarrhea induced by both cholera and enterotoxigenic strains of Escherichia coli.  相似文献   

7.
K. Harding  E. C. Cocking 《Protoplasma》1986,130(2-3):153-161
Summary E. coli spheroplasts can be used to deliver DNA vectors into plant protoplasts. The use of fluorescent dyes showed that 25–100% of the protoplast population was associated with 1–9 spheroplasts following incubation with several fusogens. Electron microscopy demonstrated spheroplasts attached to protoplasts via a plasma membrane protrusion after high pH/Ca2+ treatment, but PEG-high pH/Ca2+ promoted endocytosis of spheroplasts into a plasma membrane bounded vesicle. Ultrastructural profiles showed that fusion between spheroplasts and protoplasts did not occur. Immunofluorescence studies detectedE. coli antigens associated with tobacco protoplasts, and after fusogen treatment the antigens were dispersed within the peripheral cytoplasm. The elimination of residual contaminatingE. coli cells from protoplasts was achieved by lysozyme and antibiotic treatment, thus allowing DNA vector assessment in axenic culture.  相似文献   

8.
Giardia lamblia is a leading protozoal cause of diarrheal disease worldwide. Infection is associated with abdominal pain, malabsorption and weight loss, and protracted post-infectious syndromes. A human vaccine is not available against G. lamblia. Prior studies with human and murine immune sera have identified several parasite antigens, including surface proteins and metabolic enzymes with intracellular functions. While surface proteins have demonstrated vaccine potential, they can exhibit significant variation between G. lamblia strains. By comparison, metabolic enzymes show greater conservation but their vaccine potential has not been established. To determine whether such proteins can serve as vaccine candidates, we focused on two enzymes, α-enolase (ENO) and ornithine carbamoyl transferase (OCT), which are involved in glycolysis and arginine metabolism, respectively. We show in a cohort of patients with confirmed giardiasis that both enzymes are immunogenic. Intranasal immunization with either enzyme antigen in mice induced strong systemic IgG1 and IgG2b responses and modest mucosal IgA responses, and a marked 100- to 1,000-fold reduction in peak trophozoite load upon oral G. lamblia challenge. ENO immunization also reduced the extent and duration of cyst excretion. Examination of 44 cytokines showed only minimal intestinal changes in immunized mice, although a modest increase of CCL22 was observed in ENO-immunized mice. Spectral flow cytometry revealed increased numbers and activation state of CD4 T cells in the small intestine and an increase in α4β7-expressing CD4 T cells in mesenteric lymph nodes of ENO-immunized mice. Consistent with a key role of CD4 T cells, immunization of CD4-deficient and Rag-2 deficient mice failed to induce protection, whereas mice lacking IgA were fully protected by immunization, indicating that immunity was CD4 T cell-dependent but IgA-independent. These results demonstrate that conserved metabolic enzymes can be effective vaccine antigens for protection against G. lamblia infection, thereby expanding the repertoire of candidate antigens beyond primary surface proteins.  相似文献   

9.
Legionella pneumophila whole cells, including viable organisms or a killed vaccine, early after injection into mice suppressed the blastogenic responses of mouse spleen cells to both specific (i.e.,Legionella) and nonspecific (i.e., plant mitogen andEschericia coli lipopolysaccharide) stimulators. Mice given injections of sublethal numbers of viableLegionella or of a killed vaccine evidenced 3–4 weeks thereafter a marked increase in blastogenic sensitivity of their spleen cells to theLegionella antigen, either whole cells or soluble antigen, but no increase in responsiveness to nonspecific mitogens (i.e., concanavalin A, phytohemagglutinin, andE. coli lipopolysaccharide) was evident. In contrast, during the first week or so after injection of mice with either viable or killedLegionella, marked suppression of blastogenic responsiveness of spleen cells toLegionella antigens was evident. Concomitant suppression also occurred to concanavalin A and phytohemagglutinin, as well as toE. coli lipopolysaccharide. However, by the second week after injection of the animals with live or killedLegionella, such suppression disappeared. The importance of such early specific suppression of a cellular immune response early after exposure toLegionella antigen, in contrast with the early and sustained rise in specific antibody formation is being further investigated.  相似文献   

10.
The hepatitis C virus (HCV) is a major etiologic agent for severe liver diseases (e.g. cirrhosis, fibrosis and hepatocellular carcinoma). Approximately 140 million people have chronic HCV infections and about 500 000 die yearly from HCV‐related liver pathologies. To date, there is no licensed vaccine available to prevent HCV infection and production of a HCV vaccine remains a major challenge. Here, we report the successful production of the HCV E1E2 heterodimer, an important vaccine candidate, in an edible crop (lettuce, Lactuca sativa) using Agrobacterium‐mediated transient expression technology. The wild‐type dimer (E1E2) and a variant without an N‐glycosylation site in the E2 polypeptide (E1E2?N6) were expressed, and appropriate N‐glycosylation pattern and functionality of the E1E2 dimers were demonstrated. The humoral immune response induced by the HCV proteins was investigated in mice following oral administration of lettuce antigens with or without previous intramuscular prime with the mammalian HEK293T cell‐expressed HCV dimer. Immunization by oral feeding only resulted in development of weak serum levels of anti‐HCV IgM for both antigens; however, the E1E2?N6 proteins produced higher amounts of secretory IgA, suggesting improved immunogenic properties of the N‐glycosylation mutant. The mice group receiving the intramuscular injection followed by two oral boosts with the lettuce E1E2 dimer developed a systemic but also a mucosal immune response, as demonstrated by the presence of anti‐HCV secretory IgA in faeces extracts. In summary, our study demonstrates the feasibility of producing complex viral antigens in lettuce, using plant transient expression technology, with great potential for future low‐cost oral vaccine development.  相似文献   

11.
Characterization of 5-fluorouracil microspheres for colonic delivery   总被引:1,自引:0,他引:1  
The purpose of this investigation was to prepare and evaluate the colon-specific microspheres of 5-fluorouracil for the treatment of colon cancer. Core microspheres of alginate were prepared by the modified emulsification method in liquid paraffin and by cross-linking with calcium chloride. The core microspheres were coated with Eudragit S-100 by the solvent evaporation technique to prevent drug release in the stomach and small intestine. The microspheres were characterized by shape, size, surface morphology, size distribution, incorporation efficiency, and in vitro drug release studies. The outer surfaces of the core and coated microspheres, which were spherical in shape, were rough and smooth, respectively. The size of the core microspheres ranged from 22 to 55 μm, and the size of the coated microspheres ranged from 103 to 185 μm. The core microspheres sustained the drug release for 10 hours. The release studies of coated microspheres were performed in a pH progression medium mimicking the conditions of the gastrointestinal tract. Release was sustained for up to 20 hours in formulations with core microspheres to a Eudragit S-100 coat ratio of 1∶7, and there were no changes in the size, shape, drug content, differential scanning calorimetry thermogram, and in vitro drug release after storage at 40°C/75% relative humidity for 6 months.  相似文献   

12.
Nonsteroidal anti-inflammatory drugs (NSAIDs) induce gastric injury on long-term usage. This study aims at reducing the side effect of NSAIDs by encapsulating in zein, an acid-resistant biopolymer. Aceclofenac-loaded zein microspheres were prepared by emulsification and solvent evaporation method. The stability of zein microspheres at gastric pH retarded the release of the entrapped drug and hence reduces the possibility of gastric injury. However, the in vitro release of aceclofenac was sustained up to 72 h at intestinal pH. Thus, zein microspheres pave the way for the development of safe and sustained delivery system for NSAIDs thereby achieving the desired therapeutic potential with reduced side effects for chronic inflammatory disorders.  相似文献   

13.
Aims:  To explain the basis for false negative β‐glucuronidase reactions seen with culture media containing lactose as a carbon and energy source. Methods and Results:  Escherichia coli strains were assessed for their reactions in culture media containing a β‐d ‐glucuronidase substrate either with or without lactose. An assay was developed to test for the expression of β‐d ‐glucuronidase at pH 5·0 and pH 7·2. Strains of E. coli that gave false negative glucuronidase reactions on media containing lactose generally expressed lower concentrations of the enzyme β‐d ‐glucuronidase than strains that gave positive results, although the difference was by no means consistent. Most strains that were negative on lactose‐containing media expressed virtually no β‐d ‐glucuronidase activity at pH 5·0. Examination of colonies on Membrane lactose glucuronide agar (MLGA) from lightly polluted water showed that c. 10% of the E. coli present failed to yield green colonies on MLGA. Conclusions:  E. coli that failed to produce green colonies on MLGA produced lower levels of β‐d ‐glucuronidase than did strains that formed green colonies, the difference being greater at pH 5·0 than pH 7·2. The false negative rate for E. coli 10% which is similar to that experienced in the study that originally described MLGA. Significance and Impact of the Study:  Strains of E. coli that fail to produce typical colonies on MLGA might produce lower concentrations of the enzyme β‐d ‐glucuronidase. Whilst the enzyme activity is sufficient to be detected at pH 7·2, fermentation of lactose significantly lowers the pH of the medium and can result in reduced enzyme activity and therefore lack of detection. The false negative rate of c. 10% would be difficult to detect in routine laboratories as it would represent 1% or less of yellow colonies being identified as E. coli (assuming E. coli accounts for 10% of the total coliform population in drinking water).  相似文献   

14.
Thirty-two steers orally inoculated with a four-strain mixture (1010 CFU) of nalidixic acid-resistant Escherichia coli O157:H7 had sun-dried Ascophyllum nodosum seaweed (Tasco-14™) added to their barley-based diet (860 g/kg barley grain and 90 g/kg whole crop barley silage, dry matter basis) to assess its effectiveness in reducing fecal shedding of the pathogen. Steers were housed in four groups of eight and received Tasco-14™ in the diet, in place of barley, at levels (as fed) of 10 g/kg for 14 days (T1-14), 20 g/kg for 7 days (T2-7), 20 g/kg for 14 days (T2-14), or not at all (i.e., control, CON). The dietary treatments commenced 7 days after E. coli O157:H7 inoculation and fecal shedding patterns were examined over 14 weeks. Water, water–trough interface, feed and fecal pat samples were also collected weekly and cultured for E. coli O157:H7. Detection of the pathogen in fecal samples was less frequent (P<0.05) in T1-14 (99/168) and T2-7 (84/168) versus CON (135/168) and T2-14 (115/168), and the concentrations of E. coli O157:H7 recovered in feces from T1-14 and T2-7 steers were lower (P<0.005) than from CON or T2-14 steers. Rates of decline in shedding of E. coli O157:H7 were similar among treatments, but final numbers of E. coli O157:H7 were lower (P<0.05) in T1-14 and T2-7 as compared to T2-14 and CON. Fecal volatile fatty acid concentrations and pH were similar among treatments, suggesting no fecal alterations that were antagonistic to survival. E. coli O157:H7 was present in 1 (from T2-7) of 56 cattle drinking water samples, 2 of 56 (T1-14, CON) feed samples and 32 of 56 fecal pats. A second experiment investigated effects of the dietary treatment on growth performance of non-inoculated sheep. Tasco-14™ was administered to 40 individually fed Canadian Arcott lambs beginning at day 56 of a 105-day finishing period. The lambs received Tasco-14™ at 0 g/kg (control, CON), at 10 g/kg for 14 days (T1-14), 20 g/kg for 14 days (T2-14), 10 g/kg for 28 days (T1-28) or at 20 g/kg for 7 days (T2-7) as a top-dress on their pelleted, barley grain-based diet (n = 8). E. coli O157:H7 was not isolated from fecal samples collected at 4-week intervals, but generic E. coli populations were lower (P<0.05) in T1-28 lambs than in other treatments. Average daily gain, feed intake, feed efficiency and carcass traits did not differ among treatments. Our challenge study supports past studies showing that Tasco-14™ decreases shedding of E. coli O157:H7 by cattle. The lamb study shows that this additive did not directly affect feed intake or animal growth.  相似文献   

15.
In ten infants divided into two groups (up to one month of age and at 2–7 months of age) the dynamics and formation of different antibody isotypes produced locally in the intenstine and in serum after orally administered inactivated enteropathogenicE. coli strains O111 and O55 was followed during 30 d after the first and booster dose by using an indirect immunofluorescence method. Infants up to one month of age produced antibodies of IgM isotype in stool together with the IgA isotype after the first and booster dose of the vaccine against both antigens. Serum IgG antibody increased after 2 d following the first and second dose of antigens and remained higher during 5 d. The infants aged 2–7 months expressed predominantly the IgA isotype response in stool after the first and booster dose of antigens. The serum immunoglobulin levels did not change after oral antigen administration.  相似文献   

16.
To develop a single-shot vaccine containing diphtheria toxoid (DT) with a sufficient immune response, poly(lactide-co-glycolide) (PLGA) microspheres were prepared by water-in-oil-in-water double emulsification and solvent extraction techniques using low or high-molecular-weight PLGA (LMW-MS or HMW-MS). Stearic acid (SA) was introduced to HMW-MS (HMW/SA-MS) as a release modulator. Mean particle sizes (dvs, μm) varied between the prepared microspheres, with LMW-MS, HMW-MS, and HMW/SA-MS having the sizes of 29.83, 110.59, and 69.5 μm, respectively; however, the protein entrapment and loading efficiency did not vary, with values of 15.2–16.8 μg/mg and 61–75%, respectively. LMW-MS showed slower initial release (~?2 weeks) but faster and higher release of antigen during weeks 3~7 than did HMW-MS. HMW/SA-MS showed rapid initial release followed by a continuous release over an extended period of time (~?12 weeks). Mixed PLGA microspheres (MIX-MS), a combination of HMW/SA-MS and LMW-MS (1:1), demonstrated a sufficient initial antigen release and a subsequent boost release in a pulsatile manner. Serum antibody levels were measured by ELISA after DT immunization of Balb/c mice, and showed a greater response to MIX-MS than to alum-adsorbed DT (control). A lethal toxin challenge test with MIX-MS (a DT dose of 18 Lf) using Balb/c mice revealed complete protection, indicating a good candidate delivery system for a single-shot immunization.  相似文献   

17.
α‐Haemolysin (HlyA) from uropathogenic Escherichia coli has been demonstrated to be a significant virulence factor for ascending urinary tract infections. Once the E. coli reach the well‐vascularised kidneys, there is a high risk of bacteraemia and a subsequent septic host response. Despite this, HlyA has the potential to accelerate the host response both directly and via its ability to facilitate adenosine triphosphate release from cells. It has not been settled whether HlyA aggravates bacteraemia into a septic state. To address this, we used an E. coli strain in a model of acute urosepsis that was either transfected with a plasmid containing the full HlyA operon or one with deletion in the HlyA gene. Here, we show that HlyA accelerates the host response to E. coli in the circulation. Mice exposed to HlyA‐producing E. coli showed massively increased proinflammatory cytokines, a substantial fall in circulating thrombocytes, extensive haematuria, and intravascular haemolysis. This was not seen in mice exposed to either E. coli that do not secrete HlyA or vehicle controls. Consistent with the massive host response to the bacteria, the mice exposed to HlyA‐producing E. coli died exceedingly early, whereas mice exposed to E. coli without HlyA production and vehicle controls survived the entire observation period. These data allow us to conclude that HlyA is a virulence factor that accelerates a state of bacteraemia into fulminant sepsis in a mouse model.  相似文献   

18.
Aims: Survival of Escherichia coli O157:H7 and nonpathogenic E. coli on spinach leaves and in organic soil while growing spinach in a growth chamber was investigated. Methods and Results: Spinach plants were maintained in the growth chamber at 20°C (14 h) and 18°C (10 h) settings at 60% relative humidity. Five separate inocula, each containing one strain of E. coli O157:H7 and one nonpathogenic E. coli isolate were applied to individual 4‐week‐old spinach plants (cultivar ‘Whale’) grown in sandy soil. Leaf and soil inocula consisted of 100 μl, in 5 μl droplets, on the upper side of leaves resulting in 6·5 log CFU plant?1 and 1 ml in soil, resulting in 6·5 log CFU 200 g?1 soil per plant. Four replicates of each plant shoot and soil sample per inoculum were analysed on day 1 and every 7 days for 28 days for E. coli O157:H7 and nonpathogenic E. coli (by MPN) and for heterotrophic plate counts (HPC). Escherichia coli O157:H7 was not detected on plant shoots after 7 days but did survive in soil for up to 28 days. Nonpathogenic E. coli survived up to 14 days on shoots and was detected at low concentrations for up to 28 days. In contrast, there were no significant differences in HPC from days 0 to 28 on plants, except one treatment on day 7. Conclusions: Escherichia coli O157:H7 persisted in soil for at least 28 days. Escherichia coli O157:H7 on spinach leaves survived for less than 14 days when co‐inoculated with nonpathogenic E. coli. There was no correlation between HPC and E. coli O157:H7 or nonpathogenic E. coli. Significance and Impact of the Study: The persistence of nonpathogenic E. coli isolates makes them possible candidates as surrogates for E. coli O157:H7 on spinach leaves in field trials.  相似文献   

19.
Considering the advantageous for the rectal administration of non-steroidal anti-inflammatory drugs, the objective of this study was to formulate and evaluate rectal mucoadhesive hydrogels loaded with diclofenac-sodium chitosan (DFS-CS) microspheres. Hydroxypropyl methylcellulose (HPMC; 5%, 6%, and 7% w/w) and Carbopol 934 (1% w/w) hydrogels containing DFS-CS microspheres equivalent to 1% w/w active drug were prepared. The physicochemical characterization revealed that all hydrogels had a suitable pH for rectal application (6.5–7.4). The consistency of HPMC hydrogels showed direct proportionality to the concentration of the gelling agent, while carbopol 934 gel showed its difficulty for rectal administration. Farrow’s constant for all hydrogels were greater than one indicating pseudoplastic flow. In vitro drug release from the mucoadhesive hydrogel formulations showed a controlled drug release pattern, reaching 34.6–39.7% after 6 h. The kinetic analysis of the release data revealed that zero-order was the prominent release mechanism. The mucoadhesion time of 7% w/w HPMC hydrogel was 330 min, allowing the loaded microspheres to be attached to the surface of rectal mucosa. Histopathological examination demonstrated the lowest irritant response to the hydrogel loaded with DFS-CS microspheres in response to other forms of the drug.  相似文献   

20.
Previous reports have shown that Escherichia coli O157:H7 infection is strongly modified by intestinal microbes. In this paper, we examined whether bifidobacteria protect against E. coli O157:H7 infections using gnotobiotic mice di-associated with Bifidobacterium strains (6 species, 9 strains) and E. coli O157:H7. Seven days after oral administration of each Bifidobacterium strain, the mice were orally infected with E. coli O157:H7 and their mortality was examined. Bifidobacterium longum subsp. infantis 157F-4-1 (B. infantis 157F) and B. longum subsp. longum NCC2705 (B. longum NS) protected against the lethal infection, while mice associated with all other Bifidobacterium strains, including type strains of B. longum subsp. infantis and B. longum subsp. longum, died. There were no significant differences in the numbers of E. coli O157:H7 in the faeces among the Bifidobacterium-associated mouse groups. However, the Shiga toxin concentrations in the cecal contents and sera of the GB mice associated with B. infantis 157F and B. longum NS were significantly lower than those of the other groups. However, there were no significant differences in the volatile fatty acid concentrations and histopathological lesions between these two groups. These data suggest that some strains of B. longum subsp. longum/infantis can protect against the lethal infections of E. coli O157:H7 by preventing Shiga toxin production in the cecum and/or Shiga toxin transfer from the intestinal lumen to the bloodstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号