首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The activities of the erythrocyte enzymes hexokinase (HK), glucose-6-phosphate dehydrogenase (G-6-PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR) and glutathione peroxidase (GSH-PO) were determined in a group of 12 Europeans and in a group of 103 male Thai subjects in northern Thailand. In the Thai group there were 16 subjects with G-6-PD deficiency and 28 subjects with abnormally low levels of GR activity. A comparison of the enzyme activities in the different subgroups indicated that HK and 6-PGD are not influenced by G-6-PD deficiency whereas GR and GSH-PO activities are significantly higher in G-6-PD deficient subjects. In the group with low GR activity G-6-PD and GSH-PO showed a tendency to an elevation of activity when compared with the normal control group. Significant positive correlations exist between G-6-PD and 6-PGD in the normal group and between GR and GSH-PO in the G-6-PD deficient group. A negative correlation between GR and GSH-PO was present in the group with low GR activities. A study of the families of subjects with low activity of GR did not yield evidence for the existence of a deficiency polymorphism.
Zusammenfassung Bei 12 Europäern und einer Gruppe von 103 männlichen thailändischen Versuchspersonen wurden die Aktivitäten der Erythrocytenenzyme Hexokinase (HK), Glucose-6-Phosphat-Dehydrogenase (G-6-PD), 6-Phosphogluconat-Dehydrogenase (6-PGD), Glutathion-Reduktase (GR) und Glutathion-Peroxidase (GSH-PO) bestimmt. In der Thai-Gruppe waren 16 Personen mit G-6-PD-Mangel und 28 Personen mit abnormal niedrigen Aktivitäten der GR. Ein Vergleich der Enzymaktivitäten in verschiedenen Untergruppen zeigte, daß HK und 6-PGD durch G-6-PD-Mangel nicht beeinflußt werden. Im Gegensatz hierzu sind die Aktivitäten der GR und der GSH-PO bei G-6-PD-Mangel signifikant erhöht. In der Gruppe mit erniedrigter GR-Aktivität bestand eine Tendenz zu erhöhten Werten für G-6-PD und GSH-PO. Die Korrelationen zwischen G-6-PD und 6-PGD in der Gruppe mit normaler G-6-PD und die zwischen GR und GSH-PO in der Gruppe mit G-6-PD-Mangel waren signifikant. In der Gruppe mit erniedrigter GR-Aktivität fand sich eine negative Korrelation zwischen GR und GSH-PO. Die Untersuchungen in Familien von Personen mit niedriger GR-Aktivität ergaben keinen sicheren Hinweis auf das Vorliegen eines GR-Mangel-Polymorphismus in der untersuchten Bevölkerung.


Established and supported by Stiftung Volkswagenwerk, Hannover.  相似文献   

2.
Glutathione reductase (GR, type IV, Baker's yeast, E.C 1.6.4.2) is a flavoprotein that catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH). In this study some metal ions have been tested on GR; lithium, manganese, molybdate, aluminium, barium, zinc, calcium, cadmium and nickel. Cadmium, nickel and calcium showed a good to moderate inhibitory effect on yeast GR. GR is inhibited non-competitively by Zn2+ (up to 2 mM) and activated above this concentration. Ca2+ inhibition was non-competitive with respect to GSSG and uncompetitive with respect to NADPH. Nickel inhibition was competitive with respect to GSSG and uncompetitive with respect to NADPH. The inhibition constants for these metals on GR were determined. The chelating agent EDTA recovered 90% of the GR activity inhibited by these metals.  相似文献   

3.
The true Michaelis constant for GSH and CDNB was 0.287 mM and 0.180 mM, respectively. Regarding the quantitative effect of Cu(II) and Cd(II) inhibition on the GST system, the I50 value for Cu(II) was 0.250 mM; in contrast, Cd(II) GST-inhibition did not reach the I50 value. When the varied substrate was GSH and CDNB was fixed at saturant concentration, the Cu(II)-inhibition was consistent with a pure competitive pattern. However a mixed pattern was found when CDNB was the varied substrate and GSSH was fixed at saturant concentration. The Cd(II) inhibition effect was consistent with an uncompetitive pattern when GSH was the varied substrate and CDNB was kept at saturant level. When CDNB changed over an extensive range of concentration, the inhibition effect shows a mixed inhibition pattern with a competitive character. In addition the inhibition constants of Cu(II) were one order of magnitude lower than those of Cd(II).  相似文献   

4.
Glutathione reductase (GR, type IV, Baker's yeast, E.C 1.6.4.2) is a flavoprotein that catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH). In this study some metal ions have been tested on GR; lithium, manganese, molybdate, aluminium, barium, zinc, calcium, cadmium and nickel. Cadmium, nickel and calcium showed a good to moderate inhibitory effect on yeast GR. GR is inhibited non-competitively by Zn2 + (up to 2 mM) and activated above this concentration. Ca2 + inhibition was non-competitive with respect to GSSG and uncompetitive with respect to NADPH. Nickel inhibition was competitive with respect to GSSG and uncompetitive with respect to NADPH. The inhibition constants for these metals on GR were determined. The chelating agent EDTA recovered 90% of the GR activity inhibited by these metals.  相似文献   

5.
Heavy metal pollution can arise from many sources and damage many organisms. Exposure to the metal ions can leads to a reduction in cellular antioxidant enzyme activities and lowers cellular defense against oxidative stress. In this study we have tested effects of the some metal ions on the purified bovine kidney cortex glutathione reductase (GR). Cadmium (Cd2+), nickel (Ni2+), and zinc (Zn2+) showed inhibitory effect on the enzyme. The obtained IC?? values of Cd2+, Ni2+, and Zn2+ are 0.027, 0.8, and 1 mM, respectively. Kinetic characterization of the inhibition is also investigated. Cd2+ inhibition is noncompetitive with respect to both oxidized glutathione (GSSG) (Ki(GSSG) 0.060 ± 0.005 mM) and NADPH (Ki(NADPH) 0.025 ± 0.002 mM). Ni2+ inhibition is noncompetitive with respect to GSSG (Ki(GSSG) 0.329 ± 0.016 mM) and uncompetitive with respect to NADPH (Ki(NADPH) 0.712 ± 0.047 mM). The effect of Zn2+ on GR activity is consistent with noncompetitive inhibition pattern when the varied substrate is the GSSG (Ki(GSSG) 0.091 ± 0.005 mM) and the NADPH (Ki(NADPH) 0.226 ± 0.01 mM), respectively. GR inhibition studies may be useful for understanding the mechanisms for oxidative damage associated with heavy metal toxicity.  相似文献   

6.
1. Resting rates of Rana ridibunda erythrocyte glucose consumption and 14CO2 production from 1-14C-glucose were found to be significantly lower than the respective values in human erythrocytes. 2. In the presence of 1-14C-glucose Methylene Blue stimulated 14CO2 production 7-fold, while in the presence of 6-14C-glucose Methylene Blue stimulated 14CO2 production 1.2-fold. 3. The Km of G-6-PD for G-6-P and NADP were 29 and 12 microM, respectively while the Km of 6-PGD for 6-PG and NADP were 83 and 32 microM, respectively. The Ki of G-6-PD and 6-PGD for NADPH were 80 and 12 microM, respectively. 4. Excess amounts of NADP resulted in a significant decrease of 14CO2 production from 1-14C-glucose in total haemolysates. 5. ATP, ADP and fructose diphosphate inhibited both G-6-PD and 6-PGD, the latter being more sensitive than G-6-PD to their inhibitory effect, 2,3-DPG and reduced and oxidized glutathione showed a marked inhibitory effect on 6-PGD, while the phosphorylated trioses inhibited only G-6-PD. 6. Physiological concentrations of oxidized glutathione decreased the inhibition exercised by NADPH on G-6-PD. 7. The possible role of the two dehydrogenases in the regulation of the HMS is discussed.  相似文献   

7.
Summary The activity of erythrocyte glutathione reductase (GR) was determined in a group of 87 prisoners from northern Thailand (65 with normal, 22 with deficient erythrocyte G-6-PD) without and with added FAD. The amount of stimulation by FAD was inversely related to the original activity suggesting that FAD stimulation in vivo is one of the main determinants of GR activity. 4 subjects showed insufficient stimulation by FAD. The binding of FAD to GR seemed to be closer to saturation in G-6-PD deficient subjects but the maximal stimulated activity of these subjects was higher than in the group with normal G-6-PD. This suggests that the marked increase of GR activity in G-6-PD deficient erythrocytes is due to increased binding of FAD and to a larger amount of stimulable enzyme. Original GR activity was positively correlated with the socio-economic status, and subjects who had taken riboflavin in the period prior to examination had a higher mean GR activity than those without vitamin intake. GR activity was markedly raised by administration of riboflavin and in G-6-PD deficient subjects glutathione stability was improved. In comparison to central European subjects more than 50 percent of the examined population are GR deficient. This seems to be due to a low dietary supply of riboflavin in most cases. The findings in 4 subjects with insufficient stimulation by added FAD raise the question whether hereditary forms of GR deficiency exist in this population.
Zusammenfassung In einer Gruppe von 87 Strafgefangenen in Nordthailand (65 mit normaler, 22 mit defizienter G-6-PD) wurde die Aktivität der Glutathion-Reductase (GR) mit und ohne Zusatz von FAD bestimmt. Das Ausmaß der Stimulierung des Enzyms durch FAD verhielt sich reziprok zur ausgangsaktivität. Bei 4 Versuchspersonen war die Stimulierung durch FAD insuffizient. Die Bindung von FAD an GR war bei Versuchspersonen mit G-6-PD-Mangel näher am Sättigungspunkt. Aber auch die gesamte stimulierbare Aktivität der GR war bei Versuchspersonen mit G-6-PD-Mangel größer als bei Gesunden. Die deutliche Erhöhung der GR-Aktivität bei G-6-PD-Mangel scheint zwei Ursachen zu haben: vermehrte Bindung von FAD an das Enzym und Vermehrung der Gesamtmenge an stimulierbarem Enzym. In einer weiteren Gruppe war die Ausgangsaktivität der GR vom sozio-ökonomischen Status der Versuchsperson abhängig. Personen, die vor der Untersuchung Riboflavin-haltige Medikamente eingenommen hatten, hatten höhere Aktivitäten. Die GR-Aktivität wurde durch Einnahme von Riboflavin unter Kontrolle stark erhöht, und bei Versuchspersonen mit G-6-PD-Mangel wurde die Glutathion-Stabilität der Erythrocyten verbessert. Im Vergleich zu Mitteleuropäern sind mehr als die Hälfte der thailändischen Versuchspersonen als GR defizient einzustufen. Dies ist wahrscheinlich auf eine geringere Zufuhr an Riboflavin in der Nahrung zurückzuführen. Die Befunde bei 4 Versuchspersonen mit insuffizienter Stimulierung der GR durch FAD könnte durch einen erblichen Mangel an GR verursacht sein.


Established and supported by Stiftung Volkswagenwerk.  相似文献   

8.
The essentials of estimation of the number of enzyme active sites by reversible inhibition are discussed. The necessity of evaluation of the substrate effect on the equilibrium of the systems with a rapidly dissociating enzyme -- inhibitor complex has been demonstrated. Some procedures for determination of the number of active sites of dipeptidyl-carboxypeptidase (EC 3.4.15.1) from bovine kidney cortex, using the competitive inhibitor SQ 20 881 (Glu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) have been developed. The kinetic and equilibrium constants for the enzyme-inhibitor interaction (ki = 3.2 . 10(6) M-1s-1, k-i = 8 ms-1 and Ki = 2.5 +/- 0.5 nm) have been calculated.  相似文献   

9.
Oztürk O  Gümüşlü S 《Life sciences》2004,75(13):1551-1565
The aim of this study was to determine whether exposure to heat stress would lead to oxidative stress and whether this effect varied with different exposure periods. We kept 1-, 6- and 12-month-old male Wistar rats at an ambient temperature of either 22 degrees C or 40 degrees C for 3 and 7 days and measured glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GSH-Px) and glutathione-S-transferase (GST) activities and levels of thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH) and oxidized glutathione (GSSG) in erythrocytes and determined GSH/GSSG ratio, total glutathione and the redox index. G-6-PD and CAT activities were found to be significantly increased in 1- and 6-month-old rats after 3 and 7 days of heat stress, but G-6-PD activities decreased in 12-month-old rats. Cu, Zn-SOD activity decreased in 1-month-old rats after heat stress, whereas it increased in 6- and 12-month-old rats. GST activity increased in all groups. GSH and total GSH levels and GSH/GSSG ratios decreased in 1- and 6-month-old rats but they increased in 12-month-old rats after heat stress. GSSG levels increased in 1- and 6-month-old rats but decreased in 12-month-old rats after heat stress. TBARS levels increased in all groups. Seven days of stress is more effective in altering enzyme activities and levels of GSH, GSSG and TBARS. When the effects of both heat stress and aging were examined together, it was interesting to note that they mostly influenced G-6-PD activity.  相似文献   

10.
The effect of oral administration of endosulfan (12.5 mg/kg body weight), daily for 4 days was investigated on erythrocytes of female rats of 4 different age groups i.e. 15, 30, 70 and 365 days old. Erythrocyte membrane Na+, K(+)-ATPase and Mg2(+)-ATPase activities were significantly inhibited in all the age groups of rats. However, percent inhibition was maximum in the youngest animals. A significant decrease in the activity of erythrocyte glutathione reductase was observed in 30 and 70 days old rats whereas a significant increase in the activity of glucose-6-phosphate dehydrogenase (G-6-PD) was observed in these groups. The increase in G-6-PD activity may be a physiological response to compensate for decrease in the reduced glutathione level which results from decrease in the activity of glutathione reductase.  相似文献   

11.
Human deoxycytidine kinase: kinetic mechanism and end product regulation   总被引:3,自引:0,他引:3  
M Y Kim  D H Ives 《Biochemistry》1989,28(23):9043-9047
The kinetic properties of the monomeric deoxycytidine kinase (EC 2.7.1.74) from leukemic human T-lymphoblasts have been investigated. The results of steady-state initial-rate kinetic analysis and product inhibition studies at pH 7.5 and 37 degrees C indicate that substrate binding follows an ordered sequential pathway, with the magnesium salt of ATP being the first substrate to bind and dCMP the last product to dissociate. At subsaturating substrate concentrations, dCMP produced competitive inhibition against ATP, while against varied deoxycytidine concentrations dCMP exhibited mixed-type inhibition. ADP produced noncompetitive inhibition against either substrate. The limiting Km values for deoxycytidine and MgATP were 0.94 and 30 microM, respectively. The end product inhibitor dCTP exhibited competitive inhibition against varied ATP concentration, with a dissociation constant estimated to be 0.7 microM when extrapolated to zero ATP concentration. dCTP was purely noncompetitive against varied deoxycytidine concentration. On the basis of these kinetic results, and on the strong and specific inhibition by dCTP, it is proposed that this end product functions as a multisubstrate analogue, with its triphosphate group binding to the phosphate donor site of the enzyme and its deoxycytidine moiety overlapping and binding to the deoxynucleoside site in a highly specific manner.  相似文献   

12.
蜂毒肽的溶血作用与红细胞膜上两种酶活性变化的关系   总被引:1,自引:0,他引:1  
从蜂毒肽作用于红细胞膜上的Na-K-ATPase和葡萄糖-6-磷酸脱氢酶(G-6-PD)活性变化的角度,利用分光光度法测定酶活性,研究蜂毒肽与红细胞及膜作用过程中可能的靶点,讨论了蜂毒肽溶血过程与RBC膜上2种酶活性的变化.结果发现,蜂毒肽抑制RBC膜上酶活性的主要模式为附着/插入质膜与游离态并存模式,附着/插入质膜中的作用大于游离态的作用.Na-K-ATPase的K+结合位点是蜂毒肽的1个作用靶点.蜂毒肽插膜过程与其对此酶的作用随时间延长同步发生.蜂毒肽通过作用于葡萄糖-6-磷酸和NADP使G-6-PD的催化受到缓慢抑制,蜂毒肽形成四聚体的程度与酶活性密切相关.EDTA抑制蜂毒肽聚集,干扰蜂毒肽作用于G-6-P,蜂毒肽作用于底物G-6-P及辅酶NADP的生化机理相似,蜂毒肽抑制作用与G-6-PD的结构无关.  相似文献   

13.
Glutathione reductase (GR) deficiency is reported to occur with a variable frequency in some populations of the world. In this study, the populations of two regions of Saudi Arabia which have a high frequency of sickle cell, thalassaemia and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency, were screened for GR deficiency. Studies were also carried out to investigate the frequency of GR deficiency with other genetic blood disorders. The frequencies of complete GR deficiency were 0.0065 and 0.006, while those of partial deficiency were 0.146 and 0.074 in Al-Hafouf and Khaiber, respectively. GR deficiency was encountered in combination with the sickle gene, the G-6-PD deficiency gene and the thalassaemia gene in both regions. Individuals with GR deficiency showed slightly reduced haematological parameters. In thalassaemic/GR-deficient subjects, mean cell volume and mean cell haemoglobin were low, while in sickle cell anaemia patients with GR deficiency the haematological parameters were higher than in sickle cell anaemia patients without GR deficiency.  相似文献   

14.
Summary Over 900 individuals from ten endogamous groups in the Indian states of Maharashtra and West Bengal were studied for G-6-PD deficiency and haemoglobin variants. The incidence of G-6-PD varied from nil to 17.3%, while that of Hb-S varied from nil to 22.3%. In general, the tribal populations of Maharashtra are characterized by the presence of a high incidence of both Hb-S and G-6-PD deficiency. The caste Hindus showed an absence of Hb-S and rather low G-6-PD deficiency. Immigrant Parsis possessed the highest incidence of G-6-PD deficiency (17.3%).  相似文献   

15.
Glucose-6-Phosphate Dehydrogenase has been studied in 5267 consecutive newborn infants from Sardinian population during a four years period. The proportion of G-6-PD deficient female infants is much higher in those conceived in the winter-spring than among those conceived in summer-autumn, resulting in a lower sex ratio among G-6-PD deficient infants conceived in winter-spring as compared to G-6-PD deficient infants conceived in the summer-autumn. The overall frequency of the gene for G-6-PD deficiency is much lower in infants conceived in the summer period than in infants conceived in the other seasons. A greater reproductive efficiency of G-6-PD deficient males in the winter-spring season and/or some effect at post zygotic level favouring the survival of heterozygous G-6-PD deficient females conceived in the winter-spring period could contribute to the pattern described. Fresh vegetables containing oxidative substances are more abundant in the spring time. These substances may interact with seasonal reproductive cycles influencing reproduction efficiency of G-6-PD deficient males and/or the relative survival rate of heterozygous female embryos.  相似文献   

16.
Activities of phosphofructokinase (PFK, EC 2.7.1.11), glyceraldehyde 3-phosphate (NAD) dehydrogenase [G-3-PD(NAD), EC 1.2.1.12], glucose 6-phosphate dehydrogenase (G-6-PD, EC 1.1.1.49), and 6-phosphogluconate dehydrogenase (6-PGD, EC 1.1.1.44) were determined in bean cuttings (Phaseolus vulgaris L. cv. Top Crop) over 4 days, encompassing adventitious root primordium initiation and development. Effects of applied auxin and “endogenous root-forming stimulus”(ERS) on enzyme activities, concentrations of reducing sugars, and primordium development were also determined during the first 4 days of propagation. Effects of auxin were determined through use of applied indole-3-acetic acid (IAA) or 2,3,5-triiodobenzoic acid. Effects of ERS were evaluated by means of decapitation of cuttings. Increased basipetal transport and increased metabolism of reducing sugars occurred in leafy cuttings in response to applied IAA and to ERS. Primordium development and activities of the four enzymes increased in leafy cuttings under conditions that simultaneously increased basipetal transport and metabolism of reducing sugars. Three types of enzyme activity response were found: (i) activity increased over time by ERS and by applied IAA [G-3-PD(NAD)], (ii) activity increased over time by ERS but not by applied IAA (PFK, G-6-PD), (iii) activity increased over time but not by ERS or applied IAA (6-PGD). Increases in G-3-PD(NAD), G-6-PD, and PFK activity in leafy cuttings were positively related to primordium development. 6-PGD activity increased in leafy cuttings during primordium development and may have supported it. However, equal increases occurred in decapitated cuttings, in which the long-term development of primordia was supressed. Results for G-3-PD(NAD) that were obtained in an experiment with jack pine (Pinus banksiana Lamb.) seedling cuttings were similar to results for the same enzyme in bean cuttings. G-3-PD(NAD) activity in naphthaleneacetic acid-treated jack pine cuttings increased with time, in comparison with untreated cuttings, before root emergence.  相似文献   

17.
P F Fitzpatrick 《Biochemistry》1991,30(15):3658-3662
The steady-state kinetic mechanism for rat tyrosine hydroxylase has been determined by using recombinant enzyme expressed in insect tissue culture cells. Variation of any two of the three substrates, tyrosine, 6-methyltetrahydropterin, and oxygen, together at nonsaturating concentrations of the third gives a pattern of intersecting lines in a double-reciprocal plot. Varying tyrosine and oxygen together results in a rapid equilibrium pattern, while the other substrate pairs both fit a sequential mechanism. When tyrosine and 6-methyltetrahydropterin are varied at a fixed ratio at different oxygen concentrations, the intercept replot is linear and the slope replot is nonlinear with a zero intercept, consistent with rapid equilibrium binding of oxygen. All the replots when oxygen is varied in a fixed ratio with either tyrosine or 6-methyltetrahydropterin are nonlinear with finite intercepts. 6-Methyl-7,8-dihydropterin and norepinephrine are competitive inhibitors versus 6-methyltetrahydropterin and noncompetitive inhibitors versus tyrosine. 3-Iodotyrosine, a competitive inhibitor versus tyrosine, shows uncompetitive inhibition versus 6-methyltetrahydropterin. At high concentrations, tyrosine is a competitive inhibitor versus 6-methyltetrahydropterin. These results are consistent with an ordered kinetic mechanism with the order of binding being 6-methyltetrahydropterin, oxygen, and tyrosine and with formation of a dead-end enzyme-tyrosine complex. There is no significant primary kinetic isotope effect on the V/K values or on the Vmax value with [3,5-2H2]tyrosine as substrate. No burst of dihydroxyphenylalanine production is seen during the first turnover. These results rule out product release and carbon-hydrogen bond cleavage as rate-limiting steps.  相似文献   

18.
This work aims at studying the interaction between glutathione reductase (GR) and hypericin. The type of inhibition was determined by measuring changes in GR activity at increasing concentrations of hypericin as well as at varying concentrations of glutathione disulfide (GSSG) and nicotinamide adenine dinucleotide phosphate (NADPH), and the binding pose of hypericin was predicted by molecular docking. Accordingly, hypericin emerges as an effective inhibitor of GR. When the variable substrate is GSSG, the type of inhibition is competitive. When the variable substrate is NADPH, however, the type of inhibition appears to be linear mixed‐type competitive. Our computational analyses suggest that hypericin binds in the large intermonomer cavity of GR, and that it may interfere with the normal positioning/functioning of the redox‐active disulfide center at the enzyme's active site. Overall, besides its contributory role in promoting oxidative stress via the formation of reactive oxygen species in photodynamic therapy, hypericin can also weaken cancer cells through inhibiting GR.  相似文献   

19.
The effects of ketotifen, meloxicam, phenyramidol-HCl and gadopentetic acid on the enzyme activity of GR were studied using human erythrocyte glutathione reductase (GR) enzymes in vitro. The enzyme was purified 209-fold from human erythrocytes in a yield of 19% with 0.31?U/mg. The purification procedure involved the preparation of haemolysate, ammonium sulphate precipitation, 2',5'-ADP Sepharose 4B affinity chromatography and Sephadex G-200 gel filtration chromatography. Purified enzyme was used in the in vitro studies. In the in vitro studies, IC(50) values and K(i) constants were 0.012?mM and 0.0008?±?0.00021?mM for ketotifen; 0.029?mM and 0.0061?±?0.00127?mM for meloxicam; 0.99?mM and 0.4340?±?0.0890?mM for phenyramidol-HCl; 138?mM and 28.84?±?4.69?mM for gadopentetic acid, respectively, showing the inhibition effects on the purified enzyme. Phenyramidol-HCl showed competitive inhibition, whereas the others showed non-competitive inhibition.  相似文献   

20.
The capacity of the oxidative pentose phosphate pathway (PPP) in the heart is limited, since the activity of glucose-6-phosphate dehydrogenase (G-6-PD), the first and regulating enzyme of this pathway, is very low. Two mechanisms are involved in the regulation of this pathway. Under normal conditions, G-6-PD is inhibited by NADPH. This can be overcome in the isolated perfused rat heart by increasing the oxidized glutathione and by elevating the NADP+/NADPH ratio. Besides this rapid control mechanism, there is a long-term regulation which involves the synthesis of G-6-PD. The activity of G-6-PD was elevated in the rat heart during the development of cardiac hypertrophy due to constriction of the abdominal aorta and in the non-ischemic part of the rat heart subsequent to myocardial infarction. The catecholamines isoproterenol and norepinephrine stimulated the activity of myocardial G-6-PD in a time- and dose-dependent manner. The isoproterenol-induced stimulation was cAMP-dependent and due to increased new synthesis of enzyme protein. The G-6-PD mRNA was elevated by norepinephrine. As a consequence of the stimulation of the oxidative PPP, the available pool of 5-phosphoribosyl-l-pyrophosphate (PRPP) was expanded. PRPP is an important precursor substrate for purine and pyrimidine nucleotide synthesis. The limiting step in the oxidative PPP, the G-6-PD reaction, can be bypassed with ribose. This leads to an elevation of the cardiac PRPP pool. The decline in ATP that is induced in many pathophysiological conditions was attenuated or even entirely prevented by i.v. infusion of ribose. In two in vivo rat models, the overloaded and catecholamine-stimulated heart and the infarcted heart, the normalization of the cardiac adenine nucleotide pool by ribose was accompanied by an improvement of global heart function. Combination of ribose with adenine or inosine in isoproterenol-treated rats was more effective to restore completely the cardiac ATP level within a short period of time than either intervention alone. (Mol Cell Biochem 160/161: 101–109, 1996)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号