首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On activated DNA aphidicolin competitively inhibits the incorporation of dCMP by both calf thymus DNA polymerase alpha A2 and C enzymes and inhibits the incorporation of the other three deoxynucleoside monophosphates apparently non-competitively. However, aphidicolin does not inhibit the incorporation of dAMP into poly(dT) . oligo(A)10 nor does it inhibit the incorporation of dGMP into poly(dC) . oligo(dG)10, but, it does competitively inhibit the incorporation of dTMP into poly(dA) . oligo(dT)10.  相似文献   

2.
We have determined the 1H----3H exchange rate constants between water and C8H groups of purinic residues of alternating polynucleotides poly(dA-dT).poly(dA-dT), poly(dG-dC).poly(dG-dC) and poly(dA-dC).poly(dG-dT) as well as homopolynucleotides poly(dA).poly(dT) and poly(dG).poly(dC) in aqueous solutions with high-salt concentrations (3 M NaCl and 4-6 M CsF), in water-ethanol (60%) solution and in 0.15 M NaCl at 25 degrees C. The rate constants for adenine (kA) and guanine (kG) of polynucleotides were compared with corresponding constants for E. coli DNA. dGMP nd dAMP at the same conditions. The relation between exchange rates and conformations of polynucleotides permits the study of their conformational peculiarities in solution. Of three alternating polynucleotides examined in 0.15 M NaCl the exchange retardation was observed only for poly(dA-dT).poly(dA-dT) as compared with that in B-DNA, which is in good agreement with the B-alternating "wrinkled" DNA model. The conformations of poly(dG-dC).poly(dG-dC) and poly(dA-dC).poly(dG-dT), according to the exchange data obtained are within the B form. For homopolynucleotides in 0.15 M NaCl, the KA value for poly(dA).poly(dT) is nearly the same as kA for B-DNA, which indicates the similarity of their conformations, whereas the kG value for poly(dG).poly(dC) is 1.7-fold lower in comparison with the kG value in B-DNA. This seems to be connected with the existence of B = A conformation equilibrium for poly(dG).poly(dC) in solution. The increase of NaCl concentration to 3 M results in a B----Z transition in the case of poly(dG-dC).poly(dG-dC) and in the shift of B = A equilibrium towards the A-form in the case of poly(dG).poly(dC) as is evidenced by alterations of their KG values. Poly(dA-dT).poly(dA-dT) in 6 M CsF and poly(dA-dC).poly(dG-dT) in 4.3 M CsF maintain their inherent conformations in 0.15 M NaCl in spite of the fact that they are characterised by the "X-type" CD-spectrum at these conditions. According to the exchange data the conformation of poly(dA).poly(dT) in 6 M CsF corresponds to the "heteronomous" DNA model or some other structure with lower accessibility of C8H groups of adenylic residues.  相似文献   

3.
The base dependent binding of the cytotoxic alkaloid palmatine to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by competition dialysis, spectrophotometric, spectrofluorimetric, thermal melting, circular dichroic, viscometric and isothermal titration calorimetric (ITC) studies. Binding of the alkaloid to various polynucleotides was dependent upon sequences of base pairs. Binding data obtained from absorbance measurements according to neighbour exclusion model indicated that the intrinsic binding constants decreased in the order poly(dA).poly(dT)>poly(dA-dT).poly(dA-dT)>poly(dG-dC).poly(dG-dC)>poly(dG).poly(dC). This affinity was also revealed by the competition dialysis, increase of steady state fluorescence intensity, increase in fluorescence quantum yield, stabilization against thermal denaturation and perturbations in circular dichroic spectrum. Among the polynucleotides, poly(dA).poly(dT) showed positive cooperativity at binding values lower than r=0.05. Viscosity studies revealed that in the strong binding region, the increase of contour length of DNA depended strongly on the sequence of base pairs being higher for AT polymers and induction of unwinding-rewinding process of covalently closed superhelical DNA. Isothermal titration calorimetric data showed a single entropy driven binding event in the AT homo polymer while that with the hetero polymer involved two binding modes, an entropy driven strong binding followed by an enthalpy driven weak binding. These results unequivocally established that the alkaloid palmatine binds strongly to AT homo and hetero polymers by mechanism of intercalation.  相似文献   

4.
Abstract

We have determined the 1H→3H exchange rate constants between water and C8H groups of purinic residues of alternating polynucleotides poly(dA-dT)·poly(dA-dT), poly(dG-dC)·poly(dG- dC) and poly(dA-dC)·poly(dG-dT) as well as homopolynucleotides poly(dA)·poly(dT) and poly(dG)·poly(dC) in aqueous solutions with high-salt concentrations (3 M NaCl and 4–6 M CsF), in water-ethanol (60%) solution and in 0.15 M NaCl at 25°C. The rate constants for adenine (kA) and guanine (kG) of polynucleotides were compared with corresponding constants for E.coli DNA, dGMP nd dAMP at the same conditions. The relation between exchange rates and conformations of polynucleotides permits the study of their conformational peculiarities in solution.

Of three alternating polynucleotides examined in 0.15 M NaCl the exchange retardation was observed only for poly(dA-dT)·poly(dA-dT) as compared with that in B-DNA, which is in good agreement with the B-alternating “wrinkled” DNA model. The conformations of poly(dG-dC)·poly(dG-dC) and poly(dA-dC)·poly(dG-dT), according to the exchange data obtained, are within the B form. For homopolynucleotides in 0.15 M NaCl, the kA value for poly(dA)·poly(dT) is nearly the same as kA for B-DNA, which indicates the similarity of their conformations, whereas the kG value for poly(dG)·poly(dC) is 1.7-fold lower in comparison with the kG value in B-DNA. This seems to be connected with the existence of B? A conformation equilibrium for poly(dG)·poly(dC) in solution.

The increase of NaCl concentration to 3 M results in a B→Z transition in the case of poly(dG-dC)·poly(dG-dC) and in the shift of B?A equilibrium towards the A-form in the case of poly(dG)·poly(dC), as is evidenced by alterations of their KG values. Poly(dA-dT)·poly(dA-dT) in 6 M CsF and poly(dA-dC)·poly(dG-dT) in 4.3 M CsF maintain their inherent conformations in 0.15 M NaCl in spite of the fact that they are characterised by the “X-type” CD-spectrum at these conditions. According to the exchange data the conformation of poly(dA)·poly(dT) in 6 M CsF corresponds to the “heteronomous” DNA model or some other structure with lower accessibility of C8H groups of adenylic residues.  相似文献   

5.
In the presence of DNA and a divalent cation, an enzyme activity in cell-free extracts of Escherichia coli readily hydrolyses dATP to dADP. dGTP is degraded to a smaller extent, dCTP and dTTP being hardly affected. The artificial template primers poly(dC) . oligo(dG) and poly(dT) . oligo(dA) are also effective cofactors for this triphosphatase activity. As a consequence, assays measuring the misincorporation, by cell-free extracts, of dATP and dGTP into these defined templates are difficult to interpret, since the triphosphate substrate is being rapidly degraded during the polymerase reaction. A partial characterization of the dATPase activity was performed, demonstrating that the optimal conditions for its activity resemble those commonly used for assaying polymerase activity. Thus in crude extracts both polymerase and dATPase compete for the same substrate. The inclusion of an ATP-generating system in the reaction mixture maintains the levels of deoxynucleoside triphosphates and changes the kinetics of misincorporation of dAMP into poly(dC) . oligo(dG). No reproducible difference in such misincorporation has been found between lysates prepared from tif-1 cells grown at either permissive or restrictive temperature.  相似文献   

6.
Interaction of topotecan (TPT) with synthetic double-stranded polydeoxyribonucleotides has been studied in solutions of low ionic strength at pH = 6.8 by linear flow dichroism (LD), circular dichroism (CD), UV-Vis absorption and Raman spectroscopy. The complexes of TPT with poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dC).poly(dG-dT), poly(dA).poly(dT) and previously studied by us complexes of TPT with calf thymus DNA and coliphage T4 DNA have been shown to have negative LD in the long-wavelength absorption band of TPT, whereas the complex of TPT with poly(dA-dT).poly(dA-dT) has positive LD in this absorption band of TPT. Thus, there are two different types of TPT complexes with the polymers. TPT has been established to bind preferably to GC base pairs because its affinity to the polymers of different GC composition decreases in the following order: poly(dG-dC).poly(dG-dC) > poly(dG).poly(dC) > poly(dA-dC).poly(dG-dT) > poly(dA).poly(dT). The presence of DNA has been shown to shift monomer-dimer equilibrium in TPT solutions toward dimer formation. Several duplexes of the synthetic polynucleotides bound together by the bridges of TPT dimers may participate in the formation of the studied type of TPT-polynucleotide complexes. Molecular models of TPT complex with linear and ring supercoiled DNAs and with deoxyguanosine have been considered. TPT (and presumably all camptothecin family) proved to be a representative of a new class of DNA-specific ligands whose biological action is associated with formation of dimeric bridges between two DNA duplexes.  相似文献   

7.
The binding of the antitumor agents SN-16814 nd SN-13232 to various DNA's in solution was monitored by CD and UV absorption measurements. In addition comparative studies with dA.dT containing duplex DNA of the related ligands SN-6136 and SN-6324 were included with respect to effects of structural variations. In general all four ligands show a dA.dT preference in their binding affinity to DNA. Differences were observed for the reaction of SN-16814 which contains bicyclic ring system: it has a lower base pair selectivity, shows some affinity to poly(dG-dC).poly(dG-dC), poly(rA).poly(rU) and poly(rU). The binding mechanism of SN-16814 is associated with a significant time dependent binding effect in CD spectra and UV absorption in case of reaction with poly(dA).poly(dT) and poly(dI).poly(dC) indicating a slow kinetics. The preferred binding to dA.dT base pairs in DNA decreases in the order from SN-61367 greater than SN-13232 greater than SN-6324,SN-16814 as judged from CD titration studies, salt dissociation and melting temperature data. Competitive binding experiments with netropsin (Nt) or distamycin-5 revealed that SN-16814 and SN-13232 are displaced from poly(dA.dT).poly(dA-dT) suggesting that both ligands are less strongly bound than Nt and Dst-5 within the minor groove of B-DNA. These studies are consistent with results of the DNAse I cleavage of poly(dA-dT).poly(dA-dT) which show the same relative order of inhibition of the cleavage reaction due to ligand binding. The results suggest that the variability of the DNA binding and dA.dT sequence specificity may reside in the adaptability of benzamide-type ligands in the helical groove which is influenced by distinct structural modifications of the ligand conformation.  相似文献   

8.
W X Zhong  M Gulotta  D J Goss  M Diem 《Biochemistry》1990,29(32):7485-7491
Infrared (vibrational) circular dichroism (VCD) has been observed for the DNA models d(CG)5, poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dT).poly(dA-dT), and poly(dA).poly(dT) in the B-conformation in buffered, aqueous solution. The observed results are quantitatively interpreted in terms of the exciton model for coupled carbonyl stretching vibrational states.  相似文献   

9.

Background

Base dependent binding of the cytotoxic alkaloid harmalol to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by various photophysical and calorimetric studies, and molecular docking.

Methodology/Principal Findings

Binding data obtained from absorbance according to neighbor exclusion model indicated that the binding constant decreased in the order poly(dG-dC).poly(dG-dC)>poly(dA-dT).poly(dA-dT)>poly(dA).poly(dT)>poly(dG).poly(dC). The same trend was shown by the competition dialysis, change in fluorescence steady state intensity, stabilization against thermal denaturation, increase in the specific viscosity and perturbations in circular dichroism spectra. Among the polynucleotides, poly(dA).poly(dT) and poly(dG).poly(dC) showed positive cooperativity where as poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT) showed non cooperative binding. Isothermal calorimetric data on the other hand showed enthalpy driven exothermic binding with a hydrophobic contribution to the binding Gibbs energy with poly(dG-dC).poly(dG-dC), and poly(dA-dT).poly(dA-dT) where as harmalol with poly(dA).poly(dT) showed entropy driven endothermic binding and with poly(dG).poly(dC) it was reported to be entropy driven exothermic binding. The study also tested the in vitro chemotherapeutic potential of harmalol in HeLa, MDA-MB-231, A549, and HepG2 cell line by MTT assay.

Conclusions/Significance

Studies unequivocally established that harmalol binds strongly with hetero GC polymer by mechanism of intercalation where the alkaloid resists complete overlap to the DNA base pairs inside the intercalation cavity and showed maximum cytotoxicity on HepG2 with IC50 value of 14 µM. The results contribute to the understanding of binding, specificity, energetic, cytotoxicity and docking of harmalol-DNA complexation that will guide synthetic efforts of medicinal chemists for developing better therapeutic agents.  相似文献   

10.
The equilibrium binding of the cytotoxic plant alkaloid berberine to various DNAs and energetics of the interaction have been studied. At low ratios of bound alkaloid to base pair, the binding exhibited cooperativity to natural DNAs having almost equal proportions of AT and GC sequences. In contrast, the binding was non-cooperative to DNAs with predominantly high AT or GC sequences. Among the synthetic DNAs, cooperative binding was observed with poly(dA).poly(dT) and poly(dG).poly(dC) while non-cooperative binding was seen with poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC). Both cooperative and non-cooperative bindings were remarkably dependent on the salt concentration of the media. Linear plots of ln K(a) versus [Na(+)] for poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) showed the release of 0.56 and 0.75 sodium ions respectively per bound alkaloid. Isothermal titration calorimetry results revealed the binding to be exothermic and favoured by both enthalpy and entropy changes in all DNAs except the two AT polymers and AT rich DNA, where the same was predominantly entropy driven. Heat capacity values (DeltaCp(o)) of berberine binding to poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), Clostridium perfringens and calf thymus DNA were -98, -140, -120 and -110 cal/mol K respectively. This study presents new insights into the binding dependent base pair heterogeneity in DNA conformation and the first complete thermodynamic profile of berberine binding to DNAs.  相似文献   

11.
Propidium iodide is used as a structural probe for alternating and non-alternating DNA polymers containing guanine and the results are compared to experiments with poly[d(A-T)2], poly(dA . dT) and random DNA sequences. Viscometric titrations indicate that propidium binds to all polymers and to DNA by intercalation. The binding constant and binding site size are quite similar for all alternating polymers, non-alternating polymers containing guanine and natural DNA. Poly(dA . dT) is unusual with a lower binding constant and positive cooperativity in its propidium binding isotherms. Poly(dA . dT) and poly(dG . dC) have similar salt effects but quite different temperature effects in propidium binding equilibria. Polymers and natural DNA have similar rate constants in their SDS driven dissociation reactions. The association rate constants are similar for the alternating polymers and poly(dG . dC) but are significantly reduced for poly(dA . dT). These results suggest that natural DNA, the alternating polymers, and non-alternating polymers containing guanine convert to an intercalated conformation with bound propidium in a very similar manner.  相似文献   

12.
13.
Abstract

The binding of the antitumor agents SN-16814 nd SN-13232 to various DNA's in solution was monitored by CD and UV absorption measurements. In addition comparative studies with dA · dT containing duplex DNA of the related ligands SN-6136 and SN-6324 were included with respect to effects of structural variations. In general all four ligands show a dA · dT preference in their binding affinity to DNA.

Differences were observed for the reaction of SN-16814 which contains bicyclic ring system: it has a lower base pair selectivity, shows some affinity to poly(dG-dC) · poly(dG-dC), poly(rA) · poly(rU) and poly(rU). The binding mechanism of SN-16814 is associated with a significant time dependent binding effect in CD spectra and UV absorption in case of reaction with poly(dA) · poly(dT) and poly(dI) · poly(dC) indicating a slow kinetics.

The preferred binding to dA · dT base pairs in DNA decreases in the order from SN-61367 > SN-13232 > SN-6324, SN-16814 as judged from CD titration studies, salt dissociation and melting temperature data. Competitive binding experiments with netropsin (Nt) or distamycin-5 revealed that SN-16814 and SN-13232 are displaced from poly(dA-dT) · poly(dA-dT) suggesting that both ligands are less strongly bound than Nt and Dst-5 within the minor groove of B-DNA. These studies are consistent with results of the DNAase I cleavage of poly(dA-dT) · poly(dA-dT) which show the same relative order of inhibition of the cleavage reaction due to ligand binding. The results suggest that the variability of the DNAbinding and dA · dT sequence specificity may reside in the adaptability of benzamide-type ligands in the helical groove which is influenced by distinct structural modifications of the ligand conformation.  相似文献   

14.
S Boiteux  J Laval 《Biochemistry》1982,21(26):6746-6751
Heat treatment of poly(deoxycytidylic acid)-[poly(dC)] induces the formation of dUMP residues, which code for dAMP when replicated by Escherichia coli DNA polymerases I and III. The specificity of dUMP coding properties is indicated by the quantitative relation between the dAMP incorporated and the frequency of dUMP residues in the heat-treated poly(dC). The dAMP incorporation is prevented by preincubation of uracil containing poly(dC) with uracil-DNA glycosylase. The excision of uracil by uracil-DNA glycosylase leads to the formation of apyrimidinic sites (AP sites), which are barely replicated in vitro under physiological conditions. However, the alteration of E. coli DNA polymerase I fidelity of replication by Mn2+ greatly stimulates the replication of AP sites. There is a preferential incorporation of dAMP, as compared to dTMP, opposite the AP sites. The dAMP incorporation is prevented by preincubation of poly(dC) containing AP sites with Micrococcus luteus AP endonuclease B. The results show a close association between DNA repair by base excision and the prevention of mutagenic processes in vitro. Furthermore, since the alteration of DNA polymerase fidelity allows some replication of the noncoding DNA lesion (AP site), this could imply a role in SOS-induced mutagenesis in vivo.  相似文献   

15.
The calf thymus DNA polymerase-alpha-primase complex purified by immunoaffinity chromatography catalyzes the synthesis of RNA initiators on phi X174 single-stranded viral DNA that are efficiently elongated by the DNA polymerase. Trace amounts of ATP and GTP are incorporated into products that are full length double-stranded circular DNAs. When synthetic polydeoxynucleotides are used as templates, initiation and DNA synthesis occurs with both poly(dT) and poly(dC), but neither initiation nor DNA synthesis was observed with poly(dA) and poly(dI) templates. Nitrocellulose filter binding and sucrose gradient centrifugation studies show that the DNA polymerase-primase complex binds to deoxypyrimidine polymers, but not to deoxypurine polymers. Using d(pA)-50 with 3'-oligo(dC) tails and d(pI)-50 with 3'-oligo(dT) tails, initiator synthesis and incorporation of deoxynucleotide can be demonstrated when the average pyrimidine sequence lengths are 8 and 4, respectively. These results suggest that purine polydeoxynucleotides are used as templates by the DNA polymerase only after initiation has occurred on the oligodeoxypyrimidine sequence and that the pyrimidine stretch required by the primase activity is relatively short. Analysis of initiator chain length with poly(dC) as template showed a series of oligo(G) initiators of 19-27 nucleotides in the absence of dGTP, and 5-13 nucleotides in the presence of dGTP. The chain length of initiators synthesized by the complex when poly(dT) or oligodeoxythymidylate-tailed poly(dI) was used can be as short as a dinucleotide. Analysis of the products of replication of oligo(dC)-tailed poly(dA) shows that initiator with chain length as low as 4 can be used for initiation by the polymerase-primase complex.  相似文献   

16.
The synthesis of polydeoxyribose polymers by Escherichia coli DNA polymerase I has been investigated with control and gamma-irradiated DNA-like polymer templates containing only two bases. The results show that irradiation of a poly(dA) strand leads to the incorporation of dG, whereas irradiation of poly(dC) and poly(dG) strands both lead to the incorporation of dA. Irradiation of poly(dT) does not lead to the incorporation of any wrong base. The wrong bases are incorporated into the complementary strand of the newly synthesised DNA.  相似文献   

17.
18.
The inhibitory effect of the polypeptide antibiotics netropsin and distamycin A on DNA dependent nucleic acid synthesis has been shown to be related to the base composition of the template DNA. A number of natural DNA's of quite different dA·dT content as well as poly (dI-dC)·poly (dI-dC), poly (dA-dT)·poly (dA-dT), poly (dA) · poly (dT) and poly (dG)·poly(dC) has been studied as templates in DNA and in part in RNA polymerase reaction. The highest binding efficiency of netropsin existing for (dA·dT)-containing DNA polymers and the less pronounced interaction with the (dI·dC)-containing polymer shown by the melting and CD spectral behaviour of the complexes are entirely reflected in the template inactivation. The same is evident for distamycin A. However, in contrast to netropsin the antibiotic distamycin A exhibits some binding tendency to poly (dG)·poly (dC). Binding effects of a netropsin derivative to DNA and (dA·dT)-containing polymers suggest the importance of hydrogen bonds of the peptide groups in the complex formation.  相似文献   

19.
A nuclease from N. crassa mycelia was found to attack both heat-denatured and native DNA in endonucleolytic manner. The products of exhaustive degradation of heat-denatured DNA were mainly di- to pentanucleotides bearing 5′-phosphoryl groups. 5′-Mononucleotides amounted to 4.4% of the total products and the base distribution was in the following order: dTMP > dCMP > dGMP > dAMP. Analysis of the residues at 5′- and 3′-termini of the oligonucleotides showed that thymidine was predominant at both termini, especially at 3′- termini. Also the analysis of terminal residues produced by limited digestion (27% and 55.5 % of the substrate were rendered acid soluble, respectively) gave the same results as above. Therefore, it was suggested that N. crassa nuclease has some preference for thymidine residue to hydrolyze the sequence of ?T ↓ pT? or ?T ↓ pX-predominantly. The activity toward synthetic polymers was in the following order; poly d(A-T) ? poly dA poly dT > poly d(G-C) > poly dGpoly dC. The correlation between GC-contents and the activity was also investigated.  相似文献   

20.
The chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF) was reacted with poly(dG-dC) - poly(dG-dC); poly dG - poly dC; poly(dA-dT) - poly (dA-dT); and poly dA - poly dT under a variety of conditions. Poly (dG-homo GC polymer and 10--20 more reactive the A + T polymers. Lowering the ionic strength increased the extent of reaction, while pH change (8.9 vs. 5.5) had only a small effect. If ionic strength was adjusted so that the two guanine-containing polymers showed equal thermal stability (as judged by Tm) then the alternating copolymer was 7 times as reactive as the homopolymer. In aggreement with previous investigators, the major product was found to be 8-(N-2-fluorenylacetamido) deoxyguanosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号