首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T. neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation.  相似文献   

2.
Antimetabolite-resistant and auxotrophic mutants of the hyperthermophilic bacterium Thermotoga neapolitana were isolated to provide strains with genetic backgrounds amenable to genetic analyses. Norleucine, azaleucine, 4-nitropyridine-N-oxide, and 3-amino-1, 2, 4-triazole did not affect growth, while 5-fluorouracil (5 g/ml), 5-methyltryptophan (250g/ml), 6-azauracil (100 g/ml), and 4-fluorophenylalanine (30 g/ml) inhibited growth at the indicated minimum inhibitory concentrations. The effect of 5-fluorouracil was analyzed and found to be bacteriostatic. These inhibitors were used to select spontaneously arising resistant mutants. In addition, auxotrophic mutants requiring leucine, tryptophan, adenine, and histidine were isolated following mutagenesis with ethyl methanesulfonate. Six other auxotrophs with undefined growth requirements were also isolated. These strains will be useful for the development of genetic methods for T. neapolitana.  相似文献   

3.
Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of beta-galactosidase. Cells grown on glucose, maltose, or galactose plus glucose showed no capacity to accumulate TMG, though these cells carried out active transport of the nonmetabolizable glucose analog 2-deoxy-D-glucose. Glucose neither inhibited TMG uptake nor caused efflux of preaccumulated TMG; rather, glucose promoted TMG uptake by supplying metabolic energy. These data show that beta-D-galactosides are taken up by T. neapolitana via an active transport system that can be induced by galactose or lactose and repressed by glucose but which is not inhibited by glucose. Thus, the phenomenon of catabolite repression is present in T. neapolitana with respect to systems catalyzing both the transport and hydrolysis of beta-D-galactosides, but inducer exclusion and inducer expulsion, mechanisms that regulate permease activity, are not present. Regulation is manifest at the level of synthesis of the beta-galactoside transport system but not in the activity of the system.  相似文献   

4.
 The nucleotide sequence of the xynA gene, encoding extracellular xylanase A of Thermotoga neapolitana, was determined. The xynA gene was 3264 base pairs (bp) long and encoded a putative polypeptide of 1055 amino acids. Three different domains were identified by sequence comparison and functional analysis of proteins with N- and/or C-terminal deletions. The core domain displayed significant homology to members of the glycosyl hydrolase family 10. N- and C-terminal domains were dispensable for enzymatic activity and seemed to be responsible for thermostability and cellulose binding, respectively. The intact gene and its truncated variants were expressed in Escherichia coli and purified for biochemical characterization. The enzyme was shown to act as an endo-1,4-β-xylanase, but minor activities against lichenan, barley glucan, methylumbelliferyl cellobioside and p-nitrophenyl xyloside were also detected. The specific activity and pH and temperature optima for hydrolysis of oat xylan were 111.3 U⋅mg-1, 5.5 and 102°C, respectively. The endoxylanase was stable at 90°C and retained 50% activity when incubated for 2 h at 100°C. Received: 19 May 1995/Received revision: 31 July 1995/Accepted: 7 September 1995  相似文献   

5.
The hexameric regulatory protein ArgR formed by arginine-mediated dimerization of identical trimers governs the expression of genes required for arginine metabolism and some other genes in mesophilic and moderately thermophilic bacteria. We have cloned the argR gene from two hyperthermophilic bacteria of the genus Thermotoga. The two-domain ArgR proteins encoded by T. neapolitana and T. maritima share a low degree of sequence similarity with other bacterial arginine repressors. The ArgR protein from T. neapolitana binds to an operator located just upstream of its coding sequence and, therefore, the argR gene may be autoregulated. The protein has extremely high intrinsic thermostability and tolerance to urea. Moreover, its binding to target DNA increases the melting temperature by approximately 15° C. The formation of oligomeric ArgR-DNA complexes is a function of protein concentration, with hexameric complexes being favoured at higher concentrations. In the presence of arginine the hyperthermophilic ArgR protein binds to its own operator, argRo, only by forming hexamer ArgR-DNA complexes, whereas both trimer-DNA and hexamer-DNA complexes are detected in the absence of arginine. However, the affinity of T. neapolitana ArgR for DNA has been found to be higher for a mixture of trimers and non-bound hexamers than for arginine-bound hexamers. Our data indicate that genes for arginine biosynthesis are clustered in a putative operon, which could also be regulated by the ArgR protein, in the hyperthermophilic host. Received: 19 July 1999 / Accepted: 4 November 1999  相似文献   

6.
Abstract The phosphoglycerate kinase ( pgk ), triosephosphate isomerase ( tpi ), and enolase ( eno ) genes from Thermotoga neapolitana have been cloned and expressed in Escherichia coli . In high copy number, the pgk gene complemented an E. coli pgk strain. In T. neapolitana , the pgk and tpi genes appear to be fused and eno is near those genes. Like T. maritima , T. neapolitana produces phosphoglycerate kinase as both an individual enzyme and a fusion protein with triosephosphate isomerase, and triosephosphate isomerase activity is not found without associated phosphoglycerate kinase activity. Unlike T. maritima , which forms only a 70-kDa fusion protein, T. neapolitana expresses both 73-kDa and 81-kDa isozymes of this fusion protein. These isozymes are present in both T. neapolitana cells and in E. coli cells expressing T. neapolitana genes.  相似文献   

7.
An expressed sequence tag homologous to cheA was previously isolated by random sequencing of Thermotoga maritima cDNA clones (C. W. Kim, P. Markiewicz, J. J. Lee, C. F. Schierle, and J. H. Miller, J. Mol. Biol. 231: 960-981, 1993). Oligonucleotides complementary to this sequence tag were synthesized and used to identify a clone from a T. maritima lambda library by using PCR. Two partially overlapping restriction fragments were subcloned from the lambda clone and sequenced. The resulting 5,251-bp sequence contained five open reading frames, including cheA, cheW, and cheY. In addition to the chemotaxis genes, the fragment also encodes a putative protein isoaspartyl methyltransferase and an open reading frame of unknown function. Both the cheW and cheY genes were individually cloned into inducible Escherichia coli expression vectors. Upon induction, both proteins were synthesized at high levels. T. maritima CheW and CheY were both soluble and were easily purified from the bulk of the endogenous E. coli protein by heat treatment at 80 degrees C for 10 min. CheY prepared in this way was shown to be active by the demonstration of Mg(2+)-dependent autophosphorylation with [32P]acetyl phosphate. In E. coli, CheW mediates the physical coupling of the receptors to the kinase CheA. The availability of a thermostable homolog of CheW opens the possibility of structural characterization of this small coupling protein, which is among the least well characterized proteins in the bacterial chemotaxis signal transduction pathway.  相似文献   

8.
Acetohydroxyacid synthase (AHAS) is the key enzyme in branched chain amino acid biosynthesis pathway. The enzyme activity and properties of a highly thermostable AHAS from the hyperthermophilic bacterium Thermotoga maritima is being reported. The catalytic and regulatory subunits of AHAS from T. maritima were over-expressed in Escherichia coli. The recombinant subunits were purified using a simplified procedure including a heat-treatment step followed by chromatography. A discontinuous colorimetric assay method was optimized and used to determine the kinetic parameters. AHAS activity was determined to be present in several Thermotogales including T. maritima. The catalytic subunit of T. maritima AHAS was purified approximately 30-fold, with an AHAS activity of approximately 160±27 U/mg and native molecular mass of 156±6 kDa. The regulatory subunit was purified to homogeneity and showed no catalytic activity as expected. The optimum pH and temperature for AHAS activity were 7.0 and 85 °C, respectively. The apparent Km and Vmax for pyruvate were 16.4±2 mM and 246±7 U/mg, respectively. Reconstitution of the catalytic and regulatory subunits led to increased AHAS activity. This is the first report on characterization of an isoleucine, leucine, and valine operon (ilv operon) enzyme from a hyperthermophilic microorganism and may contribute to our understanding of the physiological pathways in Thermotogales. The enzyme represents the most active and thermostable AHAS reported so far.  相似文献   

9.
10.
11.
The cellular localization and processing of the endo-xylanases (1,4-beta-D-xylan-xylanohydrolase; EC 3.2.1.8) of the hyperthermophile Thermotoga maritima were investigated, in particular with respect to the unusual outer membrane ("toga") of this gram-negative bacterium. XynB (40 kDa) was detected in the periplasmic fraction of T. maritima cells and in the culture supernatant. XynA (120 kDa) was partially released to the surrounding medium, but most XynA remained cell associated. Immunogold labeling of thin sections revealed that cell-bound XynA was localized mainly in the outer membranes of T. maritima cells. Amino-terminal sequencing of purified membrane-bound XynA revealed processing of the signal peptide after the eighth residue, thereby leaving the hydrophobic core of the signal peptide attached to the enzyme. This mode of processing is reminiscent of type IV prepilin signal peptide cleavage. Removal of the entire XynA signal peptide was necessary for release from the cell because enzyme purified from the culture supernatant lacked 44 residues at the N terminus, including the hydrophobic part of the signal peptide. We conclude that toga association of XynA is mediated by residues 9 to 44 of the signal peptide. The biochemical and electron microscopic localization studies together with the amino-terminal processing data indicate that XynA is held at the cell surface of T. maritima via a hydrophobic peptide anchor, which is highly unusual for an outer membrane protein.  相似文献   

12.
Elemental sulfur reduction by the hyperthermophilic bacterium Thermotoga neapolitana provides an alternative to hydrogen evolution during fermentation. Electrons are transferred from reduced cofactors (ferredoxin and NADH) to sulfur by a series of unknown steps. One enzyme that may be involved is an NADH:methyl viologen oxidoreductase (NMOR), an activity that in other fermenting organisms is associated with NADH:ferredoxin oxidoreductase. We found that 83% of NMOR activity was contained in the pellet fraction of cell extracts subjected to ultracentrifugation. This pellet fraction, presumably containing cell membranes, was required for electron transfer to NAD+ from ferredoxin-dependent pyruvate oxidation. However, the NMOR activity in this fraction used neither Thermotoga nor clostridial ferredoxins as substrates. NMOR activity was also detected in aerobically prepared vesicles. By comparison with ATPase activities, NMOR was found primarily on the cytoplasmic face of these vesicles. During these studies, an extracytoplasmic hydrogenase activity was discovered. In contrast to the soluble hydrogenase, this hydrogenase activity was completely inhibited when intact cells were treated with cupric chloride and was present on the extracytoplasmic face of vescides. In contrast to a soluble hydrogenase reported in Thermotoga maritima, this activity was air-stable and was inhibited by low concentrations of nitrite. Received: 28 May 1998 / Accepted: 23 June 1998  相似文献   

13.
Abstract A ferredoxin has been purified from one of the most ancient and the most thermophilic bacteria known, Thermotoga maritima , which grous up to 90°C. The reduced protein ( M r approx. 6300) contains a single S = 1 2 [4Fe 4S]1+ cluster with complete cysteinyl ligation, and was unaffected after incubation at 95°C for 12 h. It functioned as an electron carrier for T. maritima pyruvate oxidoreductase. Remarkably, the properties and amino acid sequence of this hyperthermophilic bacterial protein are much more similar to those of ferredoxins from hyperthermophilic archaea, rather than ferredoxins from mesophilic and moderately thermophilic bacteria.  相似文献   

14.
T Dams  R Jaenicke 《Biochemistry》1999,38(28):9169-9178
Dihydrofolate reductase (DHFR) has been a well-established model system for protein folding. The enzyme DHFR from the hyperthermophilic bacterium Thermotoga maritima (TmDHFR) displays distinct adaptations toward high temperatures at the level of both structure and stability. The enzyme represents an extremely stable dimer; no isolated structured monomers could be detected in equilibrium or during unfolding. The equilibrium unfolding strictly follows the two-state model for a dimer (N(2) right harpoon over left harpoon 2U), with a free energy of stabilization of DeltaG = -142 +/- 10 kJ/mol at 15 degrees C. The two-state model is applicable over the whole temperature range (5-70 degrees C), yielding a DeltaG vs T profile with maximum stability at around 35 degrees C. There is no flattening of the stability profile. Instead, the enhanced thermostability is characterized by shifts toward higher overall stability and higher temperature of maximum stability. TmDHFR unfolds in a highly cooperative manner via a nativelike transition state without intermediates. The unfolding reaction is much slower (ca. 10(8) times) compared to DHFR from Escherichia coli (EcDHFR). In contrast to EcDHFR, no evidence for heterogeneity of the native state is detectable. Refolding proceeds via at least two intermediates and a burst-phase of rather low amplitude. Reassociation of monomeric intermediates is not rate-limiting on the folding pathway due to the high association constant of the dimer.  相似文献   

15.
Recombinant maltose-binding protein from Thermotoga maritima (TmMBP) was expressed in Escherichia coli and purified to homogeneity, applying heat incubation of the crude extract at 75 degrees C. As taken from the spectral, physicochemical and binding properties, the recombinant protein is indistinguishable from the natural protein isolated from the periplasm of Thermotoga maritima. At neutral pH, TmMBP exhibits extremely high intrinsic stability with a thermal transition >105 degrees C. Guanidinium chloride-induced equilibrium unfolding transitions at varying temperatures result in a stability maximum at approximately 40 degrees C. At room temperature, the thermodynamic analysis of the highly cooperative unfolding equilibrium transition yields DeltaG(N-->U)=100(+/-5) kJ mol(-1 )for the free energy of stabilization. Compared to mesophilic MBP from E. coli as a reference, this value is increased by about 60 kJ mol(-1). At temperatures around the optimal growth temperature of T. maritima (t(opt) approximately 80 degrees C), the yield of refolding does not exceed 80 %; the residual 20 % are misfolded, as indicated by a decrease in stability as well as loss of the maltose-binding capacity. TmMBP is able to bind maltose, maltotriose and trehalose with dissociation constants in the nanomolar to micromolar range, combining the substrate specificities of the homologs from the mesophilic bacterium E. coli and the hyperthermophilic archaeon Thermococcus litoralis. Fluorescence quench experiments allowed the dissociation constants of ligand binding to be quantified. Binding of maltose was found to be endothermic and entropy-driven, with DeltaH(b)=+47 kJ mol(-1) and DeltaS(b)=+257 J mol(-1) K(-1). Extrapolation of the linear vant'Hoff plot to t(opt) resulted in K(d) approximately 0.3 microM. This result is in agreement with data reported for the MBPs from E. coli and T. litoralis at their respective optimum growth temperatures, corroborating the general observation that proteins under their specific physiological conditions are in corresponding states.  相似文献   

16.
An alpha-galactosidase and a beta-mannanase produced by the hyperthermophilic bacterium, Thermotoga neapolitana 5068 (TN5068), separately and together, were evaluated for their ability to hydrolyze guar gum in relation to viscosity reduction of guar-based hydraulic fracturing fluids used in oil and gas well stimulation. In such applications, premature guar gum hydrolysis at lower temperatures before the fracturing process is completed is undesirable, whereas thermostability and thermoactivity are advantageous. Hyperthermophilic enzymes presumably possess both characteristics. The purified alpha-galactosidase was found to have a temperature optimum of 100-105 degrees C with a half-life of 130 minutes at 90 degrees C and 3 min at 100 degrees C, while the purified beta-mannanase was found to have a temperature optimum of 91 degrees C and a half-life of 13h at this temperature and 35 min at 100 degrees C.These represent the most thermostable versions of these enzymes yet reported. At 25 degrees C, TN5068 culture supernatants, containing the two enzyme activities, reduced viscosity of a 0.7% (wt) guar gum solution by a factor of 1.4 after a 1.5-h incubation period and by a factor of 2.4 after 5 h. This is in contrast to a viscosity reduction of 100-fold after 1.5 h and 375-fold after 5 h for a commercial preparation of these enzymes from Aspergillus niger. In contrast, at 85 degrees C, the TN5068 enzymes reduced viscosity by 30-fold after 1.5 h and 100-fold after 5 h compared to a 2.5-fold reduction after 5 h for the control. The A. niger enzymes were less effective at 85 degrees C (1.6-fold reduction after 1.5 h and a 4.2-fold reduction after 5 h), presumably due to their thermal lability at this temperature. Furthermore, it was determined that the purified beta-mannanase alone can substantially reduce viscosity of guar solutions, while the alpha-galactosidase alone had limited viscosity reduction activity. However, the alpha-galactosidase appeared to minimize residual particulate matter when used in conjunction with the beta-mannanase. This could be the result of extensive hydrolysis of the alpha-1,6 linkages between mannose and galactose units in guar, allowing more extensive hydrolysis of the mannan chain by the beta-mannanase. The use of thermostable enzymatic breakers from hyperthermophiles in hydraulic fracturing could be used to improve well stimulation and oil and gas recovery. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
18.
Inositol monophosphatase (I-1-Pase) catalyzes the dephosphorylation step in the de novo biosynthetic pathway of inositol and is crucial for all inositol-dependent processes. An extremely heat-stable tetrameric form of I-1-Pase from the hyperthermophilic bacterium Thermotoga maritima was overexpressed in Escherichia coli. In addition to its different quaternary structure (all other known I-1-Pases are dimers), this enzyme displayed a 20-fold higher rate of hydrolysis of D-inositol 1-phosphate than of the L isomer. The homogeneous recombinant T. maritima I-1-Pase (containing 256 amino acids with a subunit molecular mass of 28 kDa) possessed an unusually high V(max) (442 micromol min(-1) mg(-1)) that was much higher than the V(max) of the same enzyme from another hyperthermophile, Methanococcus jannaschii. Although T. maritima is a eubacterium, its I-1-Pase is more similar to archaeal I-1-Pases than to the other known bacterial or mammalian I-1-Pases with respect to substrate specificity, Li(+) inhibition, inhibition by high Mg(2+) concentrations, metal ion activation, heat stability, and activation energy. Possible reasons for the observed kinetic differences are discussed based on an active site sequence alignment of the human and T. maritima I-1-Pases.  相似文献   

19.
We have tested the hypothesis (Van Ooteghem et al. Appl Biochem Biotechnol 2002 98–100: 177–189) that microaerobic metabolism may increase the yield of H2 from the thermophilic bacterium Thermotoga neapolitana. In anaerobic conditions, T. neapolitana converted glucose into acetic acid and lactic acid and yielded 2.4 ± 0.3 mol H2 mol−1 glucose. The bacterium tolerated low O2 partial pressures but the H2 yield was not improved under microaerobic conditions. Our results indicate that T. neapolitana only produces H2 by anaerobic metabolism, and that the yield of H2 can be maximised by minimising the production of lactic acid.  相似文献   

20.
ABSTRACT

The orientation of the three domains in the bifunctional aspartate kinase-homoserine dehydrogenase (AK-HseDH) homologue found in Thermotoga maritima totally differs from those observed in previously known AK-HseDHs; the domains line up in the order HseDH, AK, and regulatory domain. In the present study, the enzyme produced in Escherichia coli was characterized. The enzyme exhibited substantial activities of both AK and HseDH. L-Threonine inhibits AK activity in a cooperative manner, similar to that of Arabidopsis thaliana AK-HseDH. However, the concentration required to inhibit the activity was much lower (K0.5 = 37 μM) than that needed to inhibit the A. thaliana enzyme (K0.5 = 500 μM). In contrast to A. thaliana AK-HseDH, Hse oxidation of the T. maritima enzyme was almost impervious to inhibition by L-threonine. Amino acid sequence comparison indicates that the distinctive sequence of the regulatory domain in T. maritima AK-HseDH is likely responsible for the unique sensitivity to L-threonine.

Abbreviations: AK: aspartate kinase; HseDH: homoserine dehydrogenase; AK–HseDH: bifunctional aspartate kinase–homoserine dehydrogenase; AsaDH: aspartate–β–semialdehyde dehydrogenase; ACT: aspartate kinases (A), chorismate mutases (C), and prephenate dehydrogenases (TyrA, T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号