首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyses the rate-limiting step in guanine nucleotide biosynthesis. IMPDH has an evolutionary conserved CBS subdomain of unknown function. The subdomain can be deleted without impairing the in vitro IMPDH catalytic activity and is the site for mutations associated with human retinitis pigmentosa. A guanine-prototrophic Escherichia coli strain, MP101, was constructed with the subdomain sequence deleted from the chromosomal gene for IMPDH. The ATP content was substantially elevated in MP101 whereas the GTP content was slighty reduced. The activities of IMPDH, adenylosuccinate synthetase and GMP reductase were two to threefold lower in MP101 crude extracts compared with the BW25113 wild-type strain. Guanine induced a threefold reduction in the MP101 ATP pool and a fourfold increase in the GTP pool within 10 min of addition to growing cells; this response does not result from the reduced IMPDH activity or starvation for guanylates. In vivo kinetic analysis using 14-C tracers and 33-P pulse-chasing revealed mutation-associated changes in purine nucleotide fluxes and turnover rates. We conclude that the CBS subdomain of IMPDH may coordinate the activities of the enzymes of purine nucleotide metabolism and is essential for maintaining the normal ATP and GTP pool sizes in E. coli .  相似文献   

2.
Direct assay method for inosine 5'-monophosphate dehydrogenase activity   总被引:1,自引:0,他引:1  
A rapid microassay method for the accurate measurement of the activity of inosine 5'-monophosphate dehydrogenase in crude tissue extracts was described. [8-14C]IMP and the radioactive products were separated by high-voltage electrophoresis in 0.1 M potassium phosphate buffer, pH 7.0, for 45 min. This separation method provides an analysis of the possible interfering reactions such as the metabolic conversion of the substrate IMP to inosine and adenylosuccinate, and the loss of the product XMP to xanthosine or GMP and to other metabolites. Low blank values were consistently obtained with this method because the XMP spot moves faster than the IMP spot. The major advantages of this assay method are direct measurement of IMP dehydrogenase activity in crude extracts, high sensitivity (with a limit of detection of 5 pmol of XMP production), high reproducibility (less than +/- 3.6%), low blank values (60-80 cpm), speed (2 h per 30 assays), and capability to measure activity in small amounts of tissue (10-50 mg wet wt).  相似文献   

3.
4.
An enzymatic method for inosine 5'-monophosphate in the femtomole range   总被引:1,自引:0,他引:1  
A method for measuring inosine 5'-monophosphate (IMP) by enzymatic generation of NADPH is described. Procedures are given for direct fluorometric assay in the nanomole range and indirect measurement with amplification by enzymatic cycling in the pico- and femtomole ranges. The most sensitive procedure represents a nearly 50,000-fold increase in sensitivity over enzymatic methods now available. Specificity of the assay was greatly enhanced by the use of the antibiotic coformycin, a potent inhibitor of adenosine deaminase (EC 3.5.4.4). This enzyme was found to be a major contaminant of one of the necessary enzymes, phosphoglucomutase (EC 2.7.5.1). The use of the method is illustrated by measurements of IMP in single stimulated and control rat muscle fibers.  相似文献   

5.
Purification and specificity of antibodies to inosine 5'-monophosphate   总被引:1,自引:0,他引:1  
E Sage  M Leng 《Biochimie》1977,59(3):269-274
Antibodies to inosine 5'-monophosphate elicited in rabbits by immunization with a conjugate of IMP (oxidized with periodate) and bovine serum albumin have been purified by affinity chromatography. By the use of two affinity columns, Sepharose-IMP and Sepharose-oligo(I), the antibodies have been fractionated into three fractions. By gel diffusion, the three fractions were found to react with the conjugates of bovine serum albumin and IMP, GMP and AMP respectively. The association constants for the binding of the Fab fragments purified on the Sepharose-oligo(I) column and several haptens have been deduced from fluorescence experiments. It is shown that the base and the phosphate group play an important part in the binding of IMP to Fab fragments. No reaction has been found between the antibodies and poly(I).poly(C) by gel diffusion. However, the antibodies interact with poly(I).poly(C) since they decrease the thermal stability of poly(I).poly(C).  相似文献   

6.
7.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate with the concomitant reduction of NAD to NADH. Escherichia coli IMPDH is activated by K(+), Rb(+), NH(+)(4), and Cs(+). K(+) activation is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). This inhibition is competitive versus K(+) at high K(+) concentrations, noncompetitive versus IMP, and competitive versus NAD. Thus monovalent cation activation is linked to the NAD site. K(+) increases the rate constant for the pre-steady-state burst of NADH production, possibly by increasing the affinity of NAD. Three mutant IMPDHs have been identified which increase the value of K(m) for K(+): Asp13Ala, Asp50Ala, and Glu469Ala. In contrast to wild type, both Asp13Ala and Glu469Ala are activated by all cations tested. Thus these mutations eliminate cation selectivity. Both Asp13 and Glu469 appear to interact with the K(+) binding site identified in Chinese hamster IMPDH. Like wild-type IMPDH, K(+) activation of Asp50Ala is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). However, this inhibition is noncompetitive with respect to K(+) and competitive with respect to both IMP and NAD. Asp50 interacts with residues that form a rigid wall in the IMP site; disruption of this wall would be expected to decrease IMP binding, and the defect could propagate to the proposed K(+) site. Alternatively, this mutation could uncover a second monovalent cation binding site.  相似文献   

8.
Cardiac ischemia associated with acute coronary syndrome and myocardial infarction is a leading cause of mortality and morbidity in the world. A rapid detection of the ischemic events is critically important for achieving timely diagnosis, treatment and improving the patient''s survival and functional recovery. This minireview provides an overview on the current biomarker research for detection of acute cardiac ischemia. We primarily focus on inosine and hypoxanthine, two by-products of ATP catabolism. Based on our published findings of elevated plasma concentrations of inosine/hypoxanthine in animal laboratory and clinical settings, since 2006 we have originally proposed that these two purine molecules can be used as rapid and sensitive biomarkers for acute cardiac ischemia at its very early onset (within 15 min), hours prior to the release of heart tissue necrosis biomarkers such as cardiac troponins. We further developed a chemiluminescence technology, one of the most affordable and sensitive analytical techniques, and we were able to reproducibly quantify and differentiate total hypoxanthine concentrations in the plasma samples from healthy individuals versus patients suffering from ischemic heart disease. Additional rigorous clinical studies are needed to validate the plasma inosine/hypoxanthine concentrations, in conjunction with other current cardiac biomarkers, for a better revelation of their diagnostic potentials for early detection of acute cardiac ischemia.  相似文献   

9.
Summary An enzyme sensor for hypoxanthine (Hx) and inosine (HxR), consisting of an enzyme membrane and an oxygen electrode, was constructed, Xanthine oxidase (XO) and nucleoside phosphorylase (NP) were both immobilized on a membrane prepared from cellulose triacetate, 1,8-diamino-4-aminomethyloctane and glutaraldehyde. The enzyme sensor responded to Hx and HxR in the presence of phosphate, while it responded only to Hx in the absence of phosphate. A linear correlation was observed between current decrease and the concentrations of Hx and HxR in the range 0.5–2.0 mM respectively. Correlation coefficients between the present enzyme sensor and a conventional enzymatic method were 0.98 and 0.94 for Hx and HxR respectively. The standard deviation was +-1.5 M and 0.75 M for Hx and HxR respectively in 100 experiments. A simple and rapid determination of Hx and HxR in fish meat was possible within 3 min with the enzyme sensor.  相似文献   

10.
11.
The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.  相似文献   

12.
3-Hydrogenkwadaphnin (3-HK) is a recently characterized daphnane-type compound isolated from Dendrostellera lessertii with high anti-tumor activity in animal models. Herein, we report on time- and dose-dependent effects of this compound on growth, differentiation, IMPDH inhibition, cell cycle and apoptosis of a panel of human leukemia cell lines (HL-60, K562 and Molt4). The drug decreased the growth of leukemia cells in less than 24 h of treatment. However, longer exposure times and/or higher concentrations were required to promote cell apoptosis. Cell cycle analysis revealed the accumulation of cells in their G1 phase as early as 12 h after drug exposure but sub-G1 population was recorded after 24 h. Occurrence of apoptosis was constantly accompanied by morphological (staining with DNA-binding dyes) and biochemical (DNA fragments) variations among drug-treated cells. Despite these observations, non-activated normal human PBL were insensitive to the drug action. In addition, treatment of PHA-activated PBL, K562, Molt4 and HL-60 cells with a single dose of the drug for 24 h led to the inhibition of IMPDH activity by almost 37, 38, 44 and 50%, respectively. In contrast, no difference in IMPDH activities were seen between normal PBL and the drug treated PBL cells. Restoration of the depleted GTP concentration by exogenous addition of guanosine (25-50 microM) reversed the drug effects on cell growth, DNA fragmentation and apoptosis. Furthermore, the drug effects were potentiated by exogenous addition of hypoxanthine to the drug-treated cells. Reduction of the drug potency on the non-proliferative (retinoic acid treated) HL-60 cells by almost 40%, compared to the proliferative cells, clearly shows type II IMPDH as one of the main targets of the drug. These results suggest that 3-HK may be a powerful candidate for treatment of leukemia.  相似文献   

13.
Human purine nucleoside phosphorylase (PNP) is a ubiquitous enzyme which plays a key role in the purine salvage pathway, and PNP deficiency in humans leads to an impairment of T-cell function, usually with no apparent effect on B-cell function. PNP is highly specific for 6-oxopurine nucleosides and exhibits negligible activity for 6-aminopurine nucleosides. The catalytic efficiency for inosine is 350,000-fold greater than for adenosine. Adenine nucleosides and nucleotides are deaminated by adenosine deaminase and AMP deaminase to their corresponding inosine derivatives which, in turn, may be further degraded. Here we report the crystal structures of human PNP in complex with inosine and 2('),3(')-dideoxyinosine, refined to 2.8A resolution using synchrotron radiation. The present structures provide explanation for ligand binding, refine the purine-binding site, and can be used for future inhibitor design.  相似文献   

14.
The interaction of 5'-deoxy-5'-thioadenosine 5'-monophosphate (A(S)MP) and 5'-deoxy-5'-thioinosine 5'-monophosphate (I(S)MP) with snake venom, 5'nucleotidase, and calf intestinal mucosa alkaline phosphatase has been characterized. The substrates, A(S)MP and I(S)MP, are analogs of adenosine 5'-monophosphate and inosine 5'-monophosphate in which sulfur replaces oxygen as the bridge between the 5'-carbon of the ribose and the phosphorous. The P-S bond of both A(S)MP and I(S)MP was hydrolyzed by alkaline phosphatase producing the corresponding thionucleoside as a reaction product. The Km for A(S)MP was 270 microM and the V for alkaline phosphatase was 110 nmol/min/mg (8% of the V for AMP), whereas the corresponding values for I(S)MP were 300 microM and 530 nmol/min/mg protein, respectively. In contrast, 5'-nucleotidase did not catalyze hydrolysis of either A(S)MP or I(S)MP. A(S)MP and I(S)MP were competitive inhibitors of the 5'-nucleotidase hydrolysis of AMP and IMP, respectively, with Ki values of 975 and 13 microM. Decreasing the pH of the reaction from 8.1 to 7.1 lowered the Ki for I(S)MP by 100-fold, to a value of 0.15 microM.  相似文献   

15.
Inosine 5'-monophosphate dehydrogenase (IMPDH) is the critical, rate-limiting enzyme in the de novo biosynthesis pathway for guanine nucleotides. Two separate isoenzymes, designated IMPDH types I and II, contribute to IMPDH activity. An additional pathway salvages guanine through the activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) to supply the cell with guanine nucleotides. In order to better understand the relative contributions of IMPDH types I and II and HPRT to normal biological function, a mouse deficient in IMPDH type I was generated by standard gene-targeting techniques and bred to mice deficient in HPRT or heterozygous for IMPDH type II. T-cell activation in response to anti-CD3 plus anti-CD28 antibodies was significantly impaired in both single- and double-knockout mice, whereas a more general inhibition of proliferation in response to other T- and B-cell mitogens was observed only in mice deficient in both enzymes. In addition, IMPDH type I(-/-) HPRT(-/0) splenocytes showed reduced interleukin-4 production and impaired cytolytic activity after antibody activation, indicating an important role for guanine salvage in supplementing the de novo synthesis of guanine nucleotides. We conclude that both IMPDH and HPRT activities contribute to normal T-lymphocyte activation and function.  相似文献   

16.
T S Chan 《Cell》1978,14(3):523-530
To delineate the pathogenesis of the immunodeficiency disease associated with purine nucleoside phosphorylase deficiency, the effects of guanosine, inosine, deoxyguanosine and deoxyinosine on the growth of a mouse T cell lymphoma line in culture were studied. Of these four purine nucleosides, deoxyguanosine was the most toxic. At 5 x 10?6 to 10?5 M, deoxyguanosine inhibits growth of the lymphoma cells; higher concentrations result in complete killing. The cytotoxic effects of this deoxynucleoside can be prevented by simultaneous addition to culture medium of deoxycytidine and hypoxanthine. Determination of nucleotide pools in deoxyguanosine-treated cells shows a marked reduction of the deoxycytidine triphosphate and the adenine ribonucleotide pools, accompanied by a sharp rise in the guanosine deoxyribonucleotide and a smaller increase in the corresponding ribonucleotide pools.Deoxyguanosine as well as guanosine, inosine and deoxyinosine were known to accumulate to relatively high levels in the plasma of a patient with T cell immunodeficiency disease associated with purine nucleoside phosphorylase deficiency. The other three purine nucleosides are much less toxic than deoxyguanosine. Thus it is very probable that the patient's clinical manifestations of T lymphocytopenia are the consequence of deoxyguanosine inhibition of lymphoid cell proliferation, resulting from depletion of deoxycytidine triphosphate and adenine nucleotides.  相似文献   

17.
18.
Luminol chemiluminescence induced by the xanthine or hypoxanthine-O2-xanthine oxidase system is analyzed and compared. Characteristics of the light emission curves were examined considering the conventional reaction scheme for the oxidation of both substrates in the presence of xanthine oxidase. The ratio of the areas of the rate of superoxide production during substrate oxidation to uric acid. The O2-. to uric acid ratio for each substrate can account for differences in xanthine and hypoxanthine-supported light emission, since uric acid is a strong inhibitor of O2-.-dependent luminol chemiluminescence. These results are consistent with a free radical scavenging role for uric acid. A similar but weaker scavenging effect of xanthine may also contribute to the observed differences in chemiluminescent yields between both substrates.  相似文献   

19.
Cyclic adenosine 3',5'-monophosphate responses to dopamine and isoproterenol were studied in mouse and rat spleen, thymus, lymph nodes and Peyer's patches lymphocytes and in 7 mouse cell lines of T- and B-lymphoid derivation. The responses of normal cells to dopamine were moderate, of the same extent, but selective to spleen and thymus in mouse, and to spleen and lymph nodes in rat. The YAC-1 T lymphoma cell line was sensitive to dopamine with a higher magnitude than normal lymphoid cells. Dopamine was less potent than isoproterenol in all cells, and whereas dopamine-sensitive and isoproterenol-sensitive cells, or dopamine-insensitive and isoproterenol-insensitive cells were found, no cell type was dopamine-sensitive and isoproterenol-insensitive. Altogether, these results suggest that only a small subset of lymphocytes is susceptible to the cAMP-elevating action of dopamine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号