共查询到20条相似文献,搜索用时 15 毫秒
1.
Eighty bacterial isolates from root nodules of the leguminous plants Phaseolus vulgaris, Campylotropis spp. and Cassia spp. grown in China were classified into five groups by phenotypic analyses, SDS-PAGE of whole-cell proteins, PCR-based 16S rRNA gene restriction-fragment-length-polymorphism and sequencing. Thirty-three isolates from the three plant genera were identified as Agrobacterium tumefaciens because they are closely related to the type strain of A. tumefaciens. Fourteen isolates from P. vulgaris grown in Yunnan and Inner Mongolia were classified as R. leguminosarum bv. phaseoli based on their close relationship with the type strain in numerical taxonomy and in 16S rDNA phylogeny. Twenty-seven isolates from Campylotropis delavayi, P. vulgaris and four species of Cassia grown in the central zones of China were classified into three groups within the genus Bradyrhizobium. One of these three groups could be defined as Bradyrhizobium japonicum. Our results demonstrated that P. vulgaris and the species of Campylotropis and Cassia could form nodules with diverse rhizobia in Chinese soils, including novel lineages associated with P. vulgaris. These results also offered information about the convergent evolution between rhizobia and legumes since the rhizobial populations associated with P. vulgaris in Chinese soils were completely different from those in Mexico, the original cite of this plant. Some rhizobial species could be found in all of the three leguminous genera. 相似文献
2.
From a total of 73 bacterial strains isolated from root nodules of Cytisus villosus grown in soils of the central-western region of the Moroccan Rif, 68 strains clustered into 19 repetitive extragenic palindromic (REP)-polymerase chain reaction (PCR) groups. The nearly complete 16S rRNA gene sequence from each strain showed they were closely related to members of the genus Bradyrhizobium of the Alphaproteobacteria, but affiliation at the species level was not clear. Sequencing of the housekeeping genes glnII and recA, and their concatenated phylogenetic analysis showed that 11 out of the 19 strains belong to Bradyrhizobium canariense and that another three strains were Bradyrhizobium japonicum. The remaining five strains represented new lineages within the genus Bradyrhizobium since they were not identified with any previously described species. Sequencing of the symbiotic nodC and nifH genes from each bradyrhizobial strain revealed they were all similar to those of the strains included in biovar genistearum. 相似文献
3.
Diverse endophytic bacteria isolated from a leguminous tree Conzattia multiflora grown in Mexico 总被引:1,自引:0,他引:1
Wang ET Tan ZY Guo XW Rodríguez-Duran R Boll G Martínez-Romero E 《Archives of microbiology》2006,186(4):251-259
Conzattia multiflora is a leguminous tree present only in Mexico and Guatemala. There is no record about its symbiotic or pathogenic microbes. In this study, we found that numerous bacteria with 104–106 individuals per gram of fresh epidermis were distributed in the tissue of this plant. All the bacteria isolated from the Conzattia epidermis were Gram-negative, facultative anaerobic rods and formed yellow or colorless colonies. They were identified as endophytes by inoculation tests. Some of the bacteria could significantly promote the growth of Conzattia seedlings. Nine different groups were defined by PCR-based RFLP, which were classified as Pantoea, Erwinia, Salmonella, Enterobacter, Citrobacter and Klebsiella by the phylogenetic analysis of 16S rRNA genes. The existence of plant-borne lineages of Salmonella indicates that the unexplored plants may harbor some unknown microbes. 相似文献
4.
A total of 63 bacterial strains were isolated from root nodules of Kummerowia striata and K. stipulacea grown in different geographic regions of China. These bacteria could be divided into fast-growing (FG) rhizobia and slow-growing (SG) rhizobia according to their growth rate. Genetic diversity and taxonomic relationships among these rhizobia were revealed by PCR-based 16 S rDNA RFLP and sequencing, 16 S-IGS RFLP, SDS-PAGE of whole cell soluble proteins, BOX-PCR and symbiotic gene (nifH/nodC) analyses. The symbiotic FG strains were mainly isolated from temperate regions and they were identified as four genomic species in Rhizobium and Sinorhizobium meliloti based on the consensus of grouping results. The SG strains were classified as five genomic species within Bradyrhizobium and they were mainly isolated fron the subtropic and tropical regions. The phylogenetic analyses of nifH and nodC genes showed relationships similar to that of 16 S rDNA but the symbiotic genes of Bradyrhizobium strains isolated from Kummerowia were distinct from those isolated from Arachis and soybean. These results offered evidence for rhizobial biogeography and demonstrated that the Kummerowia-nodulating ability might have evolved independently in different regions in association with distinctive genomic species of rhizobia. 相似文献
5.
Fifty-nine bacterial isolates from root nodules of the woody legumes Wisteria sinensis, Cercis racemosa and Amorpha fruticosa grown in the central and eastern regions of China were characterized with phenotypic analysis, PCR-based 16S and 23S rRNA gene RFLP, Box PCR and 16S rRNA gene sequencing. Seven main phena were defined in numerical taxonomy, which corresponded to distinct groups within the genera Agrobacterium, Bradyrhizobium, Mesorhizobium and Rhizobium in 16S and 23S rRNA gene PCR-RFLP. The phylogenetic relationships of the 16S rRNA genes supported the grouping results of PCR-RFLP. Most of the isolates from Amorpha fruticosa were classified into two groups closely related to Mesorhizobium amorphae. Seventeen of the 21 isolates from Wisteria sinensis were identified as two groups related to Rhizobium and Agrobacterium. Six out of 10 isolates from Cercis racemosa were identified as a group related to Bradyrhizobium. Our results indicated that each of the investigated legumes nodulated mainly with one or two rhizobial groups, although isolates from different plants intermingled in some small bacterial groups. In addition, correlation between geographic origin and grouping results was found in the isolates from Amorpha fruticosa. These results revealed that the symbiotic bacteria might have been selected by both the legume hosts and the geographic factors. 相似文献
6.
《Systematic and applied microbiology》2019,42(3):397-402
From a total of 80 bacterial strains isolated from root nodules of Lupinus angustifolius grown wild in the North-Eastern Algerian region of El Tarf, 64 plant host-nodulating strains clustered into 17 random amplified polymorphic DNA (RAPD) fingerprinting groups. The nearly complete 16S rRNA gene sequence from the representative strain of each group revealed they were closely related to members of the genus Bradyrhizobium of the Alphaproteobacteria, but their affiliation at the species level was not clear. Sequencing of the housekeeping genes glnII and recA, and their concatenated phylogenetic analysis, showed that 12 strains belong to B. lupini, other 2 strains affiliated with B. diazoefficiens and that 1 strain was closely related to B. japonicum. The remaining two strains showed similarity values ≤95% with B. cytisi and could represent new lineages within the genus Bradyrhizobium. Sequencing of the symbiotic nodC gene from 4 selected bradyrhizobial strains showed they were all similar to those of the species included in symbiovar genistearum. 相似文献
7.
This is the first systematic study of rhizobia associated with Albizia trees. The analyses of PCR-RFLP and sequencing of 16S rRNA genes, SDS-PAGE of whole-cell proteins and clustering of phenotypic characters grouped the 31 rhizobial strains isolated from Albizia into eight putative species within the genera Bradyrhizobium, Mesorhizobium and Rhizobium. Among these eight rhizobial species, five were unique to Albizia and the remaining three were shared with Acacia and Leucaena, two legume trees coexisting with Albizia in China. These results indicated that Albizia species nodulate with a wide range of rhizobial species and had preference of microsymbionts different from Acacia and Leucaena. The definition of four novel groups, Mesorhizobium sp., Rhizobium sp. I, Rhizobium sp. II and "R. giardinii", indicates that further studies with enlarged rhizobial population are necessary to better understand the diversity and to clarify the taxonomic relationships of Albizia-associated rhizobia. 相似文献
8.
As an introduced plant, Lablab purpureus serves as a vegetable, herbal medicine, forage and green manure in China. In order to investigate the diversity of rhizobia associated with this plant, a total of 49 rhizobial strains isolated from ten provinces of Southern China were analyzed in the present study with restriction fragment length polymorphism and/or sequence analyses of housekeeping genes (16S rRNA, IGS, atpD, glnII and recA) and symbiotic genes (nifH and nodC). The results defined the L. purpureus rhizobia as 24 IGS-types within 15 rrs-IGS clusters or genomic species belonging to Bradyrhizobium, Rhizobium, Ensifer (synonym of Sinorhizobium) and Mesorhizobium. Bradyrhizobium spp. (81.6%) were the most abundant isolates, half of which were B. elkanii. Most of these rhizobia induced nodules on L. purpureus, but symbiotic genes were only amplified from the Bradyrhizobium and Rhizobium leguminosarum strains. The nodC and nifH phylogenetic trees defined five lineages corresponding to B. yuanmingense, B. japonicum, B. elkanii, B. jicamae and R. leguminosarum. The coherence of housekeeping and symbiotic gene phylogenies demonstrated that the symbiotic genes of the Lablab rhizobia were maintained mainly through vertical transfer. However, a putative lateral transfer of symbiotic genes was found in the B. liaoningense strain. The results in the present study clearly revealed that L. purpureus was a promiscuous host that formed nodules with diverse rhizobia, mainly Bradyrhizobium species, harboring different symbiotic genes. 相似文献
9.
Tulu Degefu Endalkachew Wolde-meskel Kedir Woliy Åsa Frostegård 《Systematic and applied microbiology》2017,40(4):205-214
Bacteria belonging to the genus Bradyrhizobium nodulate various leguminous woody plants and herbs, including economically important crops such as soybean, peanut and cowpea. Here we analysed 39 Bradyrhizobium strains originating from root nodules of the leguminous trees and crops Acacia saligna, Faidherbia albida, Erythrina brucei, Albizia gummifera, Millettia ferruginea, Cajanus cajan, Vigna unguiculata and Phaseolus vulgaris, growing in southern Ethiopia. Multilocus sequence analyses (MLSA) of the 16S rRNA, glnII, recA, gyrB and dnaK genes and the ITS region grouped the test strains into seven well-supported genospecies (I–VII), six of which occupied distinct positions excluding all hitherto defined Bradyrhizobium species. Analyses of the nodA, nodC and nifH genes suggested different evolutionary history of the chromosomal and symbiosis-related genes. Our study corroborates earlier findings that Ethiopia is a hotspot for rhizobial biodiversity, justifying further search for novel strains from this region and calling for intensified research on the ecology and biochemistry of these organisms. 相似文献
10.
A total of 201 endophytic root nodule-associated bacteria collected from two legumes indigenous to different Qilian Mountain altitudes (Hexi Corridor) were characterized through 16S rDNA polymerase chain reaction (PCR)-restriction fragment length polymorphism, 16S rRNA gene sequence analysis, and enterobacterial repetitive intergenic consensus-PCR clustering. The isolates phylogenetically belonged to 35 species in the Phyllobacterium, Ensifer, Rhizobium, Microvirga, Sphingomonas, Paracoccus, Mycobacterium, Paenibacillus, Cohnella, Sporosarcina, Bacillus, Staphylococcus, Brevibacterium, Xenophilus, Erwinia, Leclercia, Acinetobacter, and Pseudomonas genera. Phylogenetic nodA sequence analysis showed higher similarity to Sinorhizobium meliloti with strains related to the Rhizobium, Sinorhizobium, and Acinetobacter genera. Sequence analysis of the nifH gene revealed that the strains belonging to Xenophilus, Acinetobacter, Phyllobacterium, and Rhizobium had genes similar to those of Mesorhizobium and Sinorhizobium. The results indicated that horizontal gene transfer could have occurred between rhizobia and non-rhizobial endophytes. Canonical correspondence analysis revealed that altitude and host plant species contributed more to the bacterial endosymbiont separation than other ecological factors. This study provided valuable information on the interactions between symbiotic bacteria, non-symbiotic bacteria and their habitats, and thus provided knowledge on their genetic diversity and ecology. 相似文献
11.
Marja Moerman Jan-Peter Nap Francine Govers Rob Schilperoort Albert van Kammen Ton Bisseling 《Plant molecular biology》1987,9(2):171-179
Nodulin gene expresison was studied in Vicia sativa (common vetch) root nodules induced by several Rhizobium and Agrobacterium strains. An Agrobacterium transconjugant containing a R. leguminosarum symplasmid instead of its Ti-plasmid, that was previously shown to form empty nodules on pea, induced nodules on Vicia roots in which nodule cells were infected with bacteria. In the Vicia nodules induced by this transconjugant, two so-called early nodulin genes were found to be expressed, whereas in the nodules formed on pea the expression of only one early nodulin gene was detected. In both cases the majority of the nodulin genes was not expressed.Apparently, an intracellular location of the bacteria is not sufficient for the induction of the majority of the nodulin genes. All nodulin genes were expressed in nodules induced by cured Rhizobium strains containing cosmid clones that have a 10 kb nod region of the sym-plasmid in common. Since in tumours no nodulin gene expression was found at all, the Agrobacterium chromosome does not contribute to the induction of nodulin genes. Therefore it is concluded that the signal for the induction of the expression of the two Vicia early nodulin genes is encoded by the nod-region, and the signal involved in the induction of all other nodulin genes has to be located outside the sym-plasmid, on the Rhizobium chromosome. The apparent difference in early nodulin gene expression between pea and Vicia is discussed in the light of the usefulness of Agrobacterium transconjugants in the study of nodulin gene expression. 相似文献
12.
Ribosomal DNA repeat unit polymorphism in 49 Vicia species 总被引:1,自引:0,他引:1
S. N. Raina Y. Ogihara 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,90(3-4):477-486
DNA restriction endonuclease fragment analysis was used to obtain new information on the genomic organization of Vicia ribosomal DNA (rDNA), more particularly among V. faba and its close relatives and the taxa within three (Narbonensis, Villosa, Sativa) species' complexes. Total genomic DNA of 90 accessions representing 49 Vicia species was restricted with 11 enzymes, and the restriction fragments were probed with three ribosomal clones. Twenty-eight repeat unit length classes were identified. The number of length classes (1–2) per accession did not correspond to the number of nucleolar organizing regions (NORs). The number of rRNA genes was independent of the 2C nuclear DNA amount present in the taxon. Each of the 90 accessions had 2 (rarely 1)-4 DraI sites. Those taxa with the same number of DraI sites generally could be distinguished from each other by different configurations. Probing of the DNA samples digested with tetranucleotide recognition restriction endonucleases emphasized differences between divergent spacer regions and enabled relative homologies between the coding regions to be established. Overall, rDNA restriction site variation among the species showed a good correlation with taxonomic classification. The rDNA analysis indicated evolutionary relatedness of the various taxa within the Narbonensis species complex. rDNA diversity within two other species complexes (Villosa, Sativa), on the other hand, was more extensive than expected. With few exceptions, data on the two complexes give evidence of taxon-specific divergences not seen with other approaches. The restriction site variability and repeat length heterogeneity in the rDNA repeat exhibited startling differences between V.faba and its close wild relatives included in the Narbonensis species complex. This analysis provides new evidence that none of the species within the complex can be considered to be putative allies of broad bean. 相似文献
13.
Twenty-five Rhizobium strains were isolated from root nodules of Astragalus spp. (10), Hedysarum alpinum (7), Glycyrrhiza pallidiflora (3) and Ononis arvensis (5). The sensitivity of these strains to bacteriophages of Rhizobium loti, R. meliloti, R. galegae and R. leguminosarum was studied. Phages specific to R. loti strains were shown to induce the phage lysis of several Astragalus, Hedysarum and Ononis rhizobia. Ten R. loti strains tested for nodulation abilities on the plant hosts under investigation were able to develop nitrogen-fixing nodules
on the Ononis arvensis roots. On the other hand, rhizobia from Ononis and Glycyrrhiza could form an effective symbiosis with Lotus corniculatus plants, so these bacteria are considered to belong to the Rhizobium loti taxon. Bacterial strains isolated from Astragalus and Hedysarum were observed to cross-nodulate their plant hosts as well as Oxytropis campestris, Glycyrrhiza uralensis and Ononis arvensis plants, whereas they could not nodulate Lotus plants. It is concluded that these Rhizobium strains comprise a cross-inoculation group related to Rhizobium loti. ei]{gnR O D}{fnDixon} 相似文献
14.
Eighty-eight root-nodule isolates from Lespedeza spp. grown in temperate and subtropical regions of China were characterized by a polyphasic approach. Nine clusters were
defined in numerical taxonomy and SDS-PAGE analysis of whole cell proteins. Based upon further characterizations of amplified
16S rDNA restriction analysis (ARDRA), PCR-based restriction fragment length polymorphism of ribosomal IGS, 16S rDNA sequence
analysis and DNA-DNA hybridization, these isolates were identified as Bradyrhizobium japonicum, B. elkanii, B. yuanmingense, Mesorhizobium amorphae, M. huakuii, Sinorhizobium meliloti and three genomic species related to B. yuanmingense, Rhizobium gallicum and R. tropici. The Bradyrhizobium species and R. tropici-related rhizobia were mainly isolated from the subtropical region and the species of Mesorhizobium, S. meliloti and R. gallicum-related species were all isolated from the temperate region. Phylogenetic analyses of nifH and nodC indicated that the symbiotic genes of distinct rhizobial species associated with Lespedeza spp. might have different origins and there was no evidence for lateral gene transfer of symbiotic genes. The results obtained
in the present study and in a previous report demonstrated that Lespedeza spp. are nodulated by rhizobia with diverse genomic backgrounds and these Lespedeza-nodulating rhizobia were not specific to the host species, but specific to their geographic origins.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
GenBank sequence accession numbers: The GenBank accession numbers were EF61095 through EF061114 and EF051240 for acquired
16S rDNA sequences; EF153395 through EF153402 for nifH sequences; and EF153403 through EF153410 for nodC sequences. 相似文献
15.
《Systematic and applied microbiology》2020,43(2):126056
In this study, the diversity and the phylogenetic relationships of bacteria isolated from root nodules of Chamaecytisus ruthenicus growing in Poland were investigated using ERIC-PCR fingerprinting and by multilocus sequence analysis (MLSA). Two major clusters comprising 13 and 3 isolates were detected which 16S rRNA gene sequencing identified as Bradyrhizobium and Phyllobacterium. The results of phylogenetic analysis of individual and concatenated atpD, gyrB and recA gene sequences showed that the studied strains may represent novel species in the genera Bradyrhizobium and Phyllobacterium. In the phylogenetic tree based on the atpD-gyrB-recA concatemers, Bradyrhizobium isolates were split into two groups closely related to Bradyrhizobium algeriense STM89T and Bradyrhizobium valentinum LmjM3T. The genus Phyllobacterium isolates formed a separate cluster close to Phyllobacterium ifriqiyense LMG27887T in the atpD-gyrB-recA phylogram. Analysis of symbiotic gene sequences (nodC, nodZ, nifD, and nifH) showed that the Bradyrhizobium isolates were most closely related to Bradyrhizobium algeriense STM89T, Bradyrhizobium valentinum LmjM3T and Bradyrhizobium retamae Ro19T belonging to symbiovar retamae. This is the first report on the occurrence of members of symbiovar retamae from outside the Mediterranean region. No symbiosis related genes were amplified from Phyllobacterium strains, which were also unable to induce nodules on C. ruthenicus roots. Based on these findings Phyllobacterium isolates can be regarded as endophytic bacteria inhabitating root nodules of C. ruthenicus. 相似文献
16.
A. Nzou L. Mich A. Klonowska G. Laguerre P. de Lajudie L. Moulin 《Systematic and applied microbiology》2009,32(6):400-412
This study reports the multilocus sequence analysis (MLSA) of nine house-keeping gene fragments (atpD, dnaK, glnA, glnB, gltA, gyrB, recA, rpoB and thrC) on a collection of 38 Bradyrhizobium isolated from Aeschynomene species in Senegal, which had previously been characterised by several phenotypic and genotypic techniques, allowing a comparative analysis of MLSA resolution power for species delineation in this genus. The nifH locus was also studied to compare house-keeping and symbiotic gene phylogenies and obtain insights into the unusual symbiotic properties of these Aeschynomene symbionts. Phylogenetic analyses (maximum likelihood, Bayesian) of concatenated nine loci produced a well-resolved phylogeny of the strain collection separating photosynthetic bradyrhizobial strains (PB) from non-photosynthetic bradyrhizobial (NPB) ones. The PB clade was interpreted as the remains an expanding ancient species that presently shows high diversification, giving rise to potential new species. B. denitrificans LMG8443 and BTAi1 strains formed a sub-clade that was identified as recently emerging new species. Congruence analyses (by Shimodaira–Hasegawa (S–H) tests) identified three gene-fragments (dnaK, glnB and recA) that should be preferred for MLSA analyses in Bradyrhizobium genus. The nine loci or nifH phylogenies were not correlated with the unusual symbiotic properties of PB (nod-dependent/nod-independent). Advantages and drawbacks of MLSA for species delineation in Bradyrhizobium are discussed. 相似文献
17.
Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China 总被引:2,自引:0,他引:2
A total of seventy-five symbiotic bacterial strains isolated from root nodules of wild Sophora alopecuroides grown in different regions of China's Loess Plateau were characterized. Based on the combined RFLP patterns, thirty-five genotypes were defined among the rhizobia and they were classified into nine genomic species, including Mesorhizobium alhagi and M. gobiense as the main groups, as well as Agrobacterium tumefaciens, M. amorphae, Phyllobacterium trifolii, Rhizobium giardinii, R. indigoferae, Sinorhizobium fredii and S. meliloti as the minor groups according to the 16S rRNA and recA gene analyses. Five and three lineages of nodA and nifH were found, respectively, in these strains, implying that the symbiotic genes of the S. alopecuroides rhizobia had different origins or had divergently evolved. Results of correspondence analysis showed that there was a correlation between rhizobial genotypes and the geographic origins. Possible lateral transfer of the recA and 16S rRNA genes between the P. trifolii and A. tumefaciens strains, and that of symbiotic genes (nodA, nifH) between different genera, was shown by discrepancies of the phylogenetic relationships of the four gene loci. These results revealed diverse rhizobia associated with wild S. alopecuroides grown in different regions of China's Loess Plateau, and demonstrated for the first time the existence of symbiotic A. tumefaciens strains in root nodules of S. alopecuroides. 相似文献
18.
Ninety symbiotic rhizobial isolates from root nodules of Coronilla varia growing in the Shaanxi province of China were characterized. Combined with the results of RFLP patterns, six genotypes were defined among the rhizobial strains and they were divided into three genomic genera. These included Mesorhizobium sp., M. alhagi, M. amorphae, M. metallidurans/M. gobiense as the dominant group (86.7%), and Rhizobium yanglingense and Agrobacterium tumefaciens as the minor groups, according to analysis of the corresponding 16S rRNA, nodC and nifH genes. Five nodC types, which mainly grouped into the Mesorhizobium genus, were obtained from all the isolates examined, implying that nodC genes probably occurred from the native habitat through lateral transfer and long-term adaptation, finally evolving toward M. alhagi. Four different nifH types, displaying obvious differences compared to those of 16S rRNA and nodC, implied that possible lateral transfer of the symbiotic genes occurred between different genera. The association between soil components and the genetic diversity of the rhizobial population demonstrated that combined genotypes were positively correlated with the pH of soil samples. 相似文献
19.
我国豇豆和绿豆根瘤菌的数值分类及16S rDNA PCR-RFLP研究 总被引:1,自引:0,他引:1
对分离自中国14个不同省(自治区)的79株豇豆和绿豆根瘤菌及12株参比菌株进行了唯一碳、氮源利用,抗生素抗性,抗逆性和酶活性等128个表型性状的测定,并用MINTS软件进行聚类分析。表型性状测定结果发现,所有菌株都有极其广泛的碳、氮源利用谱,大多数菌株可在较宽的pH(pH5·0~11·0)值范围内生长,大部分菌株能在37℃高温条件下生长,个别菌株能耐受60℃高温较长时间(20~45min)的热激。聚类分析结果表明,全部供试菌株在63·5%的相似性水平上分为两大群:一个群为慢生菌群,另一群为快生和中慢生菌群;在79%的相似性水平上分为7个亚群。在数值分类的基础上,又将参比菌株增加到22株,对79株待测菌株进行了16SrDNAPCR-RFLP分析,16SrDNAPCR产物经HaeⅢ、HinfⅠ、MspⅠ和AluⅠ4种内切酶酶切共产生34种遗传图谱类型,经GelComparⅡ软件聚类后,在79%的相似性水平上也可划分为7个亚群,与数值分类的结果有很好的一致性。 相似文献
20.
《Systematic and applied microbiology》2020,43(1):126044
Three symbiotic nitrogen-fixing bacteria (BD68T, BD66 and BD73) isolated from root nodules of Lotus tenuis in lowland soils of the Flooding Pampa (Argentina), previously classified as members of the Mesorhizobium genus, were characterized in this study. Phylogenetic analysis of their 16S rRNA gene sequences showed a close relationship to M. japonicum MAFF 303099T, M. erdmanii USDA 3471T, M. carmichaelinearum ICMP 18942T, M. opportunistum WSM 2975T and M. jarvisii ATCC 33699T, with sequence identities of 99.72%–100%. Multilocus sequence analysis of other housekeeping genes revealed that the three isolates belonged to a phylogenetically distinct clade within the genus Mesorhizobium. Strain BD68T was designated as the group representative and its genome was fully sequenced. The average nucleotide identity and in silico DNA-DNA hybridization comparisons between BD68T and the most related type strains showed values below the accepted threshold for species discrimination. Phenotypic and chemotaxonomic features were also studied.Based on these results, BD68T, BD66 and BD73 could be considered to represent a novel species of the genus Mesorhizobium, for which the name Mesorhizobium intechi sp. nov. is hereby proposed. The type strain of this species is BD68T (=CECT 9304T = LMG 30179T). 相似文献