首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The adaptive response of the yeast Yarrowia lipolytica to the oxidative stress induced by the oxidants hydrogen peroxide, menadione, and juglone has been studied. H2O2, menadione, and juglone completely inhibited yeast growth at concentrations higher than 120, 0.5, and 0.03 mM, respectively. The stationary-phase yeast cells were found to be more resistant to the oxidants than the exponential-phase cells. The 60-min pretreatment of logarithmic-phase cells with nonlethal concentrations of H2O2 (0.3 mM), menadione (0.05 mM), and juglone (0.005 mM) made the cells more resistant to high concentrations of these oxidants. The adaptation of yeast cells to H2O2, menadione, and juglone was associated with an increase in the activity of cellular catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase, the main enzymes involved in cell defense against oxidative stress.  相似文献   

2.
The adaptive response of the phytopathogenic fungus Fusarium decemcellulare to the oxidative stress induced by hydrogen peroxide and juglone (5-hydroxy-1,4-naphthoquinone) was studied. At concentrations higher than 1 mM, H2O2 and juglone completely inhibited the growth of the fungus. The 60-min pretreatment of logarithmic-phase cells with nonlethal concentrations of H2O2 (0.25 mM) and juglone (0.1 mM) led to the development of a resistance to high concentrations of these oxidants. The stationary-phase cells were found to be more resistant to the oxidants than the logarithmic-phase cells. The adaptation of fungal cells to H2O2 and juglone was associated with an increase in the activity of cellular catalase and superoxide dismutase, the main oxidative stress defense of enzymes.  相似文献   

3.
The effect of oxidants (hydrogen peroxide and juglone) on the growth, respiration, and naphthoquinone synthesis in the fungus Fusarium decemcellulare was studied. The addition of the oxidants to the exponential-phase fungus inhibited cell respiration (either partially or completely, depending on the oxidant concentration), culture growth, and naphthoquinone synthesis. The treatment of fungal cells with nonlethal concentrations of H2O2 (below 0.25 mM) and juglone (below 0.1 mM) induced the resistance of cell respiration to cyanide. The residual respiration in the presence of cyanide could be inhibited by benzohydroxamic acid, indicating the occurrence of alternative oxidase. Increased concentrations of oxidants (0.25 mM juglone and 0.5 mM H2O2) rapidly and irreversibly inhibited cell respiration. These observations suggest that the mitochondrial respiratory chain of fungal cells exposed to oxidative stress is subject to the action of active oxygen species. The treatment of fungal cells with nonlethal concentrations of H2O2 and juglone activated cellular glutathione reductase and glucose-6-phosphate dehydrogenase, which are protective enzymes against oxidative stress.  相似文献   

4.
The adaptive response of the phytopathogenic fungus Fusarium decemcellulare to the oxidative stress induced by hydrogen peroxide and juglone (5-hydroxy-1,4-naphthoquinone) was studied. At concentrations higher than 1 mM, H2O2 and juglone completely inhibited the growth of the fungus. The 60-min pretreatment of logarithmic-phase cells with nonlethal concentrations of H2O2 (0.25 mM) and juglone (0.1 mM) led to the development of a resistance to high concentrations of these oxidants. The stationary-phase cells were found to be more resistant to the oxidants than the logarithmic-phase cells. The adaptation of fungal cells to H2O2 and juglone was associated with an increase in the activity of cellular catalase and superoxide dismutase, the main enzymes involved in the defense against oxidative stress.  相似文献   

5.
The adaptive response of the yeast Yarrowia lipolytica to heat shock has been studied. Experiments showed that, after 10 min of incubation at 45 degrees C, the survival rate of Yarrowia lipolytica cells was less than 0.1%. Stationary-phase yeast cells were found to be more thermotolerant than exponential-phase cells. The 60-min preincubation of cells at 37 degrees C or pretreatment with low concentrations of H2O2 (0.5 mM) and menadione (0.05 mM) made them more tolerant to heat and to oxidative stress (120 mM hydrogen peroxide). The pH dependence of yeast thermotolerance has also been studied. The adaptation of yeast cells to heat shock and oxidative stress was found to be associated with a decrease in the intracellular level of cAMP and an increase in the activity of antioxidant enzymes (catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase).  相似文献   

6.
The effect of oxidants (hydrogen peroxide and juglone) on the growth, respiration, and naphthoquinone synthesis in the fungus Fusarium decemcellulare was studied. The addition of the oxidants to the exponential-phase fungus inhibited cell respiration (either partially or completely, depending on the oxidant concentration), culture growth, and naphthoquinone synthesis. The treatment of fungal cells with nonlethal concentrations of H2O2 (below 0.25 mM) and juglone (below 0.1 mM) induced the resistance of cell respiration to cyanide. The residual respiration in the presence of cyanide could be inhibited by benzohydroxamic acid, indicating the occurrence of alternative oxidase. Increased concentrations of oxidants (0.25 mM juglone and 0.5 mM H2O2) rapidly and irreversibly inhibited cell respiration. These observations suggest that the mitochondrial respiratory chain of fungal cells exposed to oxidative stress is subject to the action of active oxygen species. The treatment of fungal cells with nonlethal concentrations of H2O2 and juglone activated cellular glutathione reductase and glucose-6-phosphate dehydrogenase, which are protective enzymes against oxidative stress.  相似文献   

7.
Heat shock (45 degrees C) and the effect of oxidants (H2O2) resulted in a decrease of the respiratory activity of yeast cells and their survival rate. Increased resistance to stress effects after mild heat treatment (37 degrees C) or treatment with a nonlethal dose of oxidants (0.5 mM H2O2 for 60 min) was accompanied by appearance of an alternative (cyanide-resistant) oxidative pathway in the mitochondria, which promotes survival due to retention of the capacity for ATP synthesis in the first coupling point at the level of endogenous NADH dehydrogenase. The alternative oxidative pathway is more resistant to the effect of stressors that disrupt electron transfer in the cytochrome site of the respiratory chain.  相似文献   

8.
Physiological adaptive and cross-protection responses to oxidants were investigated in Agrobacterium tumefaciens. Exposure of A. tumefaciens to sublethal concentrations of H2O2 induced adaptive protection to lethal concentrations of H2O2. Similar treatments with organic peroxide and menadione did not produce adaptive protection to subsequent exposure to lethal concentrations of these oxidants. Pretreatment of A. tumefaciens with an inducing concentration of menadione conferred cross-protection against H2O2, but not to tert-butyl hydroperoxide (tBOOH), killing. The menadione induced cross-protection to H2O2 was due to the compound's ability to highly induce the peroxide scavenging enzyme, catalase. The levels of catalase directly correlated with the bacterium's ability to survive H2O2 treatment. Some aspects of the oxidative stress response of A. tumefaciens differ from other bacteria, and these differences may be important in plant/microbe interactions.  相似文献   

9.
During plant-microbe interactions and in the environment, Xanthomonas campestris pv. phaseoli is likely to be exposed to high concentrations of multiple oxidants. Here, we show that simultaneous exposures of the bacteria to multiple oxidants affects cell survival in a complex manner. A superoxide generator (menadione) enhanced the lethal effect of an organic peroxide (tert-butyl hydroperoxide) by 1, 000-fold; conversely, treatment of cells with menadione plus H(2)O(2) resulted in 100-fold protection compared to that for cells treated with the individual oxidants. Treatment of X. campestris with a combination of H(2)O(2) and tert-butyl hydroperoxide elicited no additive or protective effect. High levels of catalase alone are sufficient to protect cells against the lethal effect of menadione plus H(2)O(2) and tert-butyl hydroperoxide plus H(2)O(2). These data suggest that H(2)O(2) is the lethal agent responsible for killing the bacteria as a result of these treatments. However, increased expression of individual genes for peroxide (alkyl hydroperoxide reductase, catalase)- and superoxide (superoxide dismutase)-scavenging enzymes or concerted induction of oxidative stress-protective genes by menadione gave no protection against killing by a combination of menadione plus tert-butyl hydroperoxide. However, X. campestris cells in the stationary phase and a spontaneous H(2)O(2)-resistant mutant (X. campestris pv. phaseoli HR) were more resistant to killing by menadione plus tert-butyl hydroperoxide. These findings give new insight into oxidant killing of Xanthomonas spp. that could be generally applied to other bacteria.  相似文献   

10.
The role of seleno-glutathione peroxidase (GSHPx; EC 1.11.1.9) in the cellular defense against oxidative stress was selectively investigated in novel cell models. Expression vectors designed to overexpress human GSHPx efficiently in a broad range of mammalian cells were used to transfect T47D human breast cells which contain very low levels of endogenous GSHPx. Several stable transfectants expressing GSHPx to various extents, up to 10-100 times more than parental cells, were isolated and characterized. Growth inhibition kinetics following transient exposure to increasing concentrations of H2O2, cumene hydroperoxide or menadione (an intracellular source of free radicals and reactive oxygen intermediates) showed that transfectants overexpressing GSHPx were considerably more resistant than control T47D cell derivatives to each of these oxidants. A sensitive DNA end-labeling procedure was used as a novel approach to compare relative extents of DNA strand breakage in these cells. In contrast to the extensive DNA damage induced in control transfectants by 1-h exposure to cytotoxic concentrations of menadione, the extent of DNA breakage detected in GSHPx-rich transfectants was remarkably reduced (6- to 9-fold, p less than 0.005).  相似文献   

11.
Aiming to clarify the mechanisms by which eukaryotes acquire tolerance to oxidative stress, adaptive and cross-protection responses to oxidants were investigated in Saccharomyces cerevisiae. Cells treated with sub-lethal concentrations of menadione (a source of superoxide anions) exhibited cross-protection against lethal doses of peroxide; however, cells treated with H2O2 did not acquire tolerance to a menadione stress, indicating that menadione response encompasses H2O2 adaptation. Although, deficiency in cytoplasmic superoxide dismutase (Sod1) had not interfered with response to superoxide, cells deficient in glutathione (GSH) synthesis were not able to acquire tolerance to H2O2 when pretreated with menadione. These results suggest that GSH is an inducible part of the superoxide adaptive stress response, which correlates with a decrease in the levels of intracellular oxidation. On the other hand, neither the deficiency of Sod1 nor in GSH impaired the process of acquisition of tolerance to H2O2 achieved by a mild pretreatment with peroxide. Using a strain deficient in the cytosolic catalase, we were able to conclude that the reduction in lipid peroxidation levels produced by the adaptive treatment with H2O2 was dependent on this enzyme. Corroborating these results, the pretreatment with low concentrations of H2O2 promoted an increase in catalase activity.  相似文献   

12.
Abstract Treatment of Candida albicans with low concentrations of either hydrogen peroxide or menadione (a Superoxide generating agent) induces an adaptive response which protects cells from the lethal effects of a subsequent challenge with higher concentrations of these oxidants. Pre-treatment with either menadione or hydrogen peroxide is protective against cell killing by either oxidant. This suggests that the pathogenic yeast C. albicans (unlike the budding yeast Saccharomyces cerevisiae which has separate responses) possesses an adaptive response that responds to both these oxidants. In addition, we found that C. albicans showed a greater level of resistance to oxidants, both H2O2 and redox-cycling agents, compared to that observed with S. cerevisiae . In an attempt to characterise the oxidative stress response in more detail we have analysed the effect of oxidants on the activities of a number of enzymes with known antioxidant activity.  相似文献   

13.
The adaptive response of the yeast Yarrowia lipolytica to heat shock has been studied. Experiments showed that, after 10 min of incubation at 45°C, the survival rate of Yarrowia lipolytica cells was less than 0.1%. Stationary-phase yeast cells were found to be more thermotolerant than exponential-phase cells. A 60-min preincubation of cells at 37°C or pretreatment with low concentrations of H2O2 (0.5 mM) or menadione (0.05 mM) made them more tolerant to heat and to oxidative stress (120 mM hydrogen peroxide). The pH dependence of yeast thermotolerance has also been studied. The adaptation of yeast cells to heat shock and oxidative stress was found to be associated with a decrease in the intracellular level of cAMP and an increase in the activity of antioxidant enzymes (catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase).  相似文献   

14.
15.
When yeast cells are exposed to sublethal concentrations of oxidants, they adapt to tolerate subsequent lethal treatments. Here, we show that this adaptation involves tolerance of oxidative damage, rather than protection of cellular constituents. o- and m-tyrosine levels are used as a sensitive measure of protein oxidative damage and we show that such damage accumulates in yeast cells exposed to H(2)O(2) at low adaptive levels. Glutathione represents one of the main cellular protections against free radical attack and has a role in adaptation to oxidative stress. Yeast mutants defective in glutathione metabolism are shown to accumulate significant levels of o- and m-tyrosine during normal aerobic growth conditions.  相似文献   

16.
Oxidative stress acutely increases the permeability of the vascular endothelium to large molecules that would not otherwise cross the barrier. Ascorbic acid is an antioxidant that tightens the endothelial permeability barrier, so we tested whether it might also prevent the increase in endothelial permeability due to cellular oxidative stress. Treatment of EA.hy926 endothelial cells cultured on filter inserts with H(2) O(2) , menadione, and buthionine sulfoximine increased endothelial permeability to radiolabeled inulin. Short-term ascorbate loading of the cells to what are likely physiologic concentrations of the vitamin by treating them with dehydroascorbate prevented the increase in endothelial permeability due to these agents. The nonphysiologic antioxidants dithiothreitol and tempol also prevented increases in endothelial barrier permeability induced by the agents. These results suggest that oxidative stress induced directly by oxidants or indirectly by glutathione depletion impairs endothelial barrier function and that intracellular ascorbate may serve to prevent this effect.  相似文献   

17.
Sensitivity to various oxidants was determined for Escherichia coli strains JTG10 and 821 deficient in biosynthesis of glutathione (gsh-) and their common parental strain AB1157 (gsh+). The three strains showed identical sensitivity to H2O2. E. coli 821 was more resistant than AB1157 and JTG10 to menadione, cumene hydroperoxide, and N-ethylmaleimide. This resistance was not related to the gsh mutation because the other gsh- mutant and the parental strain showed similar sensitivity to these oxidants. The measured activities of NADPH:menadione diaphorase and glucose-6-phosphate dehydrogenase and the extracellular level of menadione suggested that the enhanced resistance of E. coli 821 to menadione might be due to decreased diaphorase activity, but not to a lowered rate of menadione uptake.  相似文献   

18.
19.
Vibrio harveyi is a causative agent of destructive luminous vibriosis in farmed black tiger prawn (Penaeus monodon). V. harveyi peroxide and superoxide stress responses toward elevated levels of a superoxide generated by menadione were investigated. Exposure of V. harveyi to sub-lethal concentrations of menadione induced high expression of genes in both the OxyR regulon (e.g., a monofunctional catalase or KatA and an alkyl hydroperoxide reductase subunit C or AhpC), and the SoxRS regulon (e.g., a superoxide dismutase (SOD) and a glucose-6-phosphate dehydrogenase). V. harveyi expressed two detectable, differentially regulated SOD isozymes, [Mn]-SOD and [Fe]-SOD. [Fe]-SOD was expressed constitutively throughout the growth phase while [Mn]-SOD was expressed at the stationary phase and could be induced by a superoxide generator. Physiologically, pre-treatment of V. harveyi with menadione induced cross-protection against subsequent exposure to killing concentrations of H(2)O(2). This induced cross-protection required newly synthesized proteins. However, the treatment did not induce significant protection against exposures to killing concentrations of menadione itself or cross-protect against an organic hydroperoxide (tert-butyl hydroperoxide). Unexpectedly, growing V. harveyi in high-salinity media induced protection against menadione killing. This protection was independent of SOD induction. Stationary-phase cells were more resistant to menadione killing than exponential-phase cells. The induction of oxidative stress protective enzymes and stress-altered physiological responses could play a role in the survival of this bacterium in the host marine crustaceans.  相似文献   

20.
We have investigated the antioxidant properties of V79 Chinese hamster cells rendered resistant to menadione by chronic exposure to increasing concentrations of this quinone. MD1, a clone of resistant cells, was compared to the parental M8 cells; the former showed increased activity of catalase (3 fold), glutathione peroxidase (1.6 fold) and DT-diaphorase (2.6 fold), as well as an increase in glutathione (3.2 fold). Although one of the products of menadione metabolism is superoxide anion, no changes in total superoxide dismutase activity was observed in MD1 cells. MD1 menadione resistant cells were also resistant to killing by hydrogen peroxide and contained tandem duplication of chromosome 6. A similar duplication of chromosome 6 was seen in several independently derived menadione resistant clones and therefore seems closed linked to the establishment of the resistance. Upon removal of menadione from the medium, some of these properties of MD1 cells, viz., resistance to menadione, elevated glutathione levels, and glutathione peroxidase activity, were lost and the cells resembled M8 cells. However, resistance to H2O2, elevated catalase activity and the duplicated chromosome remained stable for more than 40 cell passages in the absence of menadione. The increase in catalase activity was correlated with an increase in catalase mRNA content and a 50% amplification of catalase gene, as determined, respectively, by Northern and Southern blot analysis. The role of the chromosome 6 duplication in resistance to oxidative stress remains to be established. It is not responsible directly for elevated catalase levels since the catalase gene is on chromosome 3.Abbreviations SDS Sodium Dodecyl Sulphate - SOD Superoxide Dismutase - PBS Phosphate Buffered Saline (8.1 mM Na2HPO4, 1.47 mM KH2PO4, 2.68 mM KCl, 137 mM NaCl) - CDTA N,N,N,N-tetracetic-trans-1,2-diaminocyclohexane acid - MOPS Sulphonic-3-(N-morpholine)-propane acid - SSC 150 mM Nacl, 15 mM sodium-citrate, pH 6.8  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号