首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the influence of plasma protein concentration on fluid balance in the newborn lung, we measured pulmonary arterial and left atrial pressures, lung lymph flow, and concentrations of protein in lymph and plasma of eight lambs, 2-3 wk old, before and after we reduced their plasma protein concentration from 5.8 +/- 0.3 to 3.6 +/- 0.6 g/dl. Each lamb underwent two studies, interrupted by a 3-day period in which we drained protein-rich systemic lymph through a thoracic duct fistula and replaced fluid losses with feedings of a protein-free solution of electrolytes and glucose. Each study consisted of a 2-h control period followed by 4 h of increased lung microvascular pressure produced by inflation of a balloon in the left atrium. Body weight and vascular pressures did not differ significantly during the two studies, but lung lymph flow increased from 2.6 +/- 0.1 ml/h during normoproteinemia to 4.1 +/- 0.1 ml/h during hypoproteinemia. During development of hypoproteinemia, the average difference in protein osmotic pressure between plasma and lymph decreased by 1.6 +/- 2 Torr at normal left atrial pressure and by 4.9 +/- 2.2 Torr at elevated left atrial pressure. When applied to the Starling equation governing microvascular fluid balance, these changes in liquid driving pressure were sufficient to account for the observed increases in lung fluid filtration; reduction of plasma protein concentration did not cause a statistically significant change in calculated filtration coefficient. Protein loss did not influence net protein clearance from the lungs nor did it accentuate the increase in lymph flow associated with left atrial pressure elevation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Experiments were conducted in seven chronically instrumented unanesthetized sheep to estimate the osmotic reflection coefficient (sigma d) for total proteins and the solvent-drag reflection coefficients (sigma f) for six endogenous protein fractions. We measured the lymph-to-plasma ratio of total proteins (CL/CP) and six protein fractions during base-line conditions and after left atrial pressure elevations of 24-26 h per elevation. We also monitored pulmonary arterial pressure, left atrial pressure, systemic arterial pressure, and lung lymph flow at the various levels of pulmonary microvascular pressure. Our results indicate the CL/CP may require up to 24 h to reach a true steady state. It was found that sigma d is at least 0.89 for total proteins and sigma f is at least 0.84, 0.87, 0.86, 0.92, 0.95, and 0.96 for protein fractions with effective molecular radii of 36, 39.5, 44, 66, 105, and 123 A, respectively. In addition, the sigma f values for various protein fractions obtained from this investigation are compared with the predicted values of various mathematical models of the lung microcirculation.  相似文献   

3.
We devised a technique that permitted elevation of pulmonary pressures in unanesthetized sheep by occluding their pulmonary veins. Using this technique, we raised pulmonary capillary pressure from a baseline of 13.2 +/- 2.2 to 35.3 +/- 5.1 mmHg. This increased lung lymph flow (from 8.8 +/- 2.7 to 53.1 +/- 13.9 ml/h). We estimated the pulmonary microvascular oncotic reflection coefficient and found it to be 0.82 +/- 0.05 (SD). The filtration coefficient was 0.019 +/- 0.005 ml.mmHg-1.min-1. During the period of increased pressure, the animals had stable arterial pressures and cardiac outputs. None of the animals developed blood coagulation problems. These data illustrate the usefulness of pulmonary venous occlusion to elevate pulmonary microvascular pressure to obtain plasma-to-lymph protein concentration ratios independent of flow, allowing for the calculation of the oncotic reflection coefficient.  相似文献   

4.
The effect of lung lymph fistula preparation on pulmonary microvascular permeability was investigated in sheep. Acutely prepared animals (n = 9) were compared with animals with a chronic lung lymph fistula (n = 5). The osmotic reflection coefficients (sigma) for total protein, albumin, immunoglobins (Ig) G and M, and the equivalent pore dimensions were calculated. Data were achieved at maximal possible lymph flows (QL) following elevation of left atrial pressure. In sheep with a chronic lung lymph fistula sigma's for total protein, albumin, IgG, and IgM at maximal lymph flows were 0.76 +/- 0.01, 0.65 +/- 0.09, 0.79 +/- 0.03, and 0.91 +/- 0.01, respectively. In the acutely prepared group the minimum lymph-to-plasma protein concentration for total protein was 0.39 +/- 0.06, corresponding to a sigma of 0.61 +/- 0.01. The sigma for albumin, IgG, and IgM were 0.48 +/- 0.04, 0.64 +/- 0.02, and 0.87 +/- 0.01, respectively. The equivalent pore radii in the chronic group were determined to be 54 and 190 A with 29% of the filtration accounted for by large pores. In the acute group the small pores were 56 A and the large pores 175 A with 53% of total volume flow at maximum lymph flows occurring through the large pores. Assuming a constant small-pore population the large pore number increased 4.5 times after surgery. For total protein, IgG, and IgM, sigma's in the acutely prepared group were significantly lower than in the control group. These results thus indicate that surgical preparation of a lung lymph fistula in sheep may cause acute increases in pulmonary microvascular permeability.  相似文献   

5.
Effect of progressive exercise on lung fluid balance in sheep   总被引:3,自引:0,他引:3  
The purpose of this study is to determine the roles of cardiac output and microvascular pressure on changes in lung fluid balance during exercise in awake sheep. We studied seven sheep during progressive treadmill exercise to exhaustion (10% grade), six sheep during prolonged constant-rate exercise for 45-60 min, and five sheep during hypoxia (fraction of inspired O2 = 0.12) and hypoxic exercise. We made continuous measurements of pulmonary arterial, left atrial, and systemic arterial pressures, lung lymph flow, and cardiac output. Exercise more than doubled cardiac output and increased pulmonary arterial pressures from 19.2 +/- 1 to 34.8 +/- 3.5 (SE) cmH2O. Lung lymph flow increased rapidly fivefold during progressive exercise and returned immediately to base-line levels when exercise was stopped. Lymph-to-plasma protein concentration ratios decreased slightly but steadily. Lymph flows correlated closely with changes in cardiac output and with calculated microvascular pressures. The drop in lymph-to-plasma protein ratio during exercise suggests that microvascular pressure rises during exercise, perhaps due to increased pulmonary venous pressure. Lymph flow and protein content were unaffected by hypoxia, and hypoxia did not alter the lymph changes seen during normoxic exercise. Lung lymph flow did not immediately return to base line after prolonged exercise, suggesting hydration of the lung interstitium.  相似文献   

6.
Effects of increased ventilation on lung lymph flow in unanesthetized sheep   总被引:1,自引:0,他引:1  
To determine the effect of an increase in spontaneous minute ventilation on lung fluid balance, we added external dead space to the breathing circuit of six tracheostomized, unanesthetized, spontaneously breathing sheep in which lung lymph fistulas had been created surgically. The addition of 120-180 ml of dead space caused minute ventilation to increase by 50-100% (secondary to increases in both tidal volume and frequency), without changing pulmonary arterial pressure, pulmonary capillary wedge pressure, cardiac output, or arterial blood gas tensions. The increase in spontaneous ventilation was associated with an average increase of 27% in lung lymph flow (P less than 0.05) and an average reduction of 11% in the lymph-to-plasma concentration ratio (L/P) for total protein (P less than 0.05). Lymph flow and L/P for total protein approached stable values after 2-3 h of hyperpnea, and the increase in lymph flow persisted for at least 18 h of dead-space breathing. Removal of dead space was associated with a rapid return (within 45 min) of lymph flow to base-line levels. These results suggest that hyperpnea increases the pulmonary transvascular filtration rate. Since no changes in vascular pressures or cardiac output were observed, this increase in transvascular filtration is most likely due to a fall in interstitial fluid pressure.  相似文献   

7.
The purpose of this study was to determine whether an increase in pulmonary vascular filtration pressure affects net production of liquid within the lumen of the fetal lung. We studied 14 chronically catheterized fetal lambs [130 +/- 3 (SD) days gestation] before, during, and after a 4-h rapid (500 ml/h) intravenous infusion of isotonic saline. In seven fetuses we measured pulmonary arterial and left atrial pressures, lung lymph flow, and protein osmotic pressures in plasma and lymph. In eight lambs with a chronically implanted tracheal loop cannula, we measured the change in luminal lung liquid volume over time by progressive dilution of tracheally instilled 125I-albumin, which stays within the lung lumen. Saline infusion increased pulmonary vascular pressures by 2-3 mmHg and decreased the plasma-lymph difference in protein osmotic pressure by 1 mmHg. Lung lymph flow increased from 1.9 +/- 0.6 to 3.9 +/- 1.2 (SD) ml/h; net production of luminal lung liquid did not change (12 +/- 5 to 12 +/- 6 ml/h). Thus an increase in net fluid filtration pressure in the pulmonary circulation, which was sufficient to double lung lymph flow, had no significant effect on luminal lung liquid secretion in fetal sheep.  相似文献   

8.
We assessed pulmonary endothelial and epithelial permeability and lung lymph flow in nine adult sheep under base-line conditions and after resuscitation from profound hemorrhagic shock. Animals were mechanically ventilated and maintained on 1% halothane anesthesia while aortic pressure was held at 40 Torr for 3 h. Systemic heparin was not used. After reinfusion of shed blood, sheep recovered from anesthesia and we measured lung lymph flow (QL), lymph-to-plasma concentration ratio for proteins, and time taken to reach half-equilibrium concentration of intravenous tracer albumin in lymph (t1/2). Twenty-four hours after bolus injection of radio-albumin we lavaged subsegments of the right upper lobe and determined fractional equilibration of the tracer in the alveolar luminal-lining layer. In each sheep we had measured these parameters 7 days earlier under base-line conditions. Animals were killed, and the lungs were used for gravimetric determination of extravascular lung water (gravimetric extravascular lung water-to-dry weight ratio) 24 h after resuscitation from shock. Pulmonary endothelial injury after resuscitation was evidenced by marked increase in QL, without fall in lymph-to-plasma ratio. Time taken to reach half-equilibrium concentration fell from 169 +/- 47 (SD) min in base-line studies to 53 +/- 33 min after shock. There was no evidence of lung epithelial injury. Gravimetric extravascular lung water-to-dry weight ratio was significantly increased in these animals killed 24 h after resuscitation (4.94 +/- 0.29) compared with values in our laboratory controls (4.13 +/- 0.09, mean +/- SD). These data demonstrate a loss of lung endothelial integrity in sheep after resuscitation from profound hemorrhagic shock.  相似文献   

9.
The osmotic reflection coefficient (sigma) for total plasma proteins was estimated in 11 isolated blood-perfused canine lungs. Sigma's were determined by first measuring the capillary filtration coefficient (Kf,C in ml X min-1 X 100g-1 X cmH2O-1) using increased hydrostatic pressures and time 0 extrapolation of the slope of the weight gain curve. Kf,C averaged 0.19 +/- 0.05 (mean +/- SD) for 14 separate determinations in the 11 lungs. Following a Kf,C determination, the isogravimetric capillary pressure (Pc,i) was determined and averaged 9.9 +/- 0.5 cmH2O for all controls reported in this study. Then the blood colloids in the perfusate were either diluted or concentrated. The lung either gained or lost weight, respectively, and an initial slope of the weight gain curve (delta W/delta t)0 was estimated. The change in plasma protein colloid osmotic pressure (delta IIP) was measured using a membrane osmometer. The measured delta IIP was related to the effective colloid osmotic pressure (delta IIM) by delta IIM = (delta W/delta t)0/Kf,C = sigma delta IIP. Using this relationship, sigma averaged 0.65 +/- 0.06, and the least-squares linear regression equation relating Pc,i and the measured IIP was Pc,i = -3.1 + 0.67 IIP. The mean estimate of sigma (0.65) for total plasma proteins is similar to that reported for dog lung using lymphatic protein flux analyses, although lower than estimates made in skeletal muscle using the present methods (approximately 0.95).  相似文献   

10.
Since it is not clear whether alpha-adrenergic receptors can modulate lung microvascular liquid and protein leakiness, we studied the effects of alpha-adrenergic receptor stimulation or blockade on lung filtration under base-line conditions and during the acute lung injury caused by a 4-h infusion of venous air emboli in six unanesthetized, chronically instrumented sheep with lung lymph fistulas. During the experiments we continuously infused the alpha-adrenergic receptor agonist phenylephrine hydrochloride (1.0 microgram X kg-1 X min-1 iv) or the alpha-adrenergic receptor antagonist phentolamine mesylate (1.0 mg X kg-1 X min-1 iv), and we measured pulmonary vascular pressures, cardiac output, lung lymph flow, and the lymph-to-plasma protein concentration ratio. During air embolism, alpha-receptor stimulation increased pulmonary vascular resistance and decreased lung lymph flow by 25%; alpha-receptor blockade had the opposite effects. During recovery, neither agent significantly affected pulmonary hemodynamics or lymph flow. Our results indicate that alpha-adrenergic receptors are active during air embolism and modulate pulmonary filtration by causing arteriolar constriction, which reduces the surface area or the perfusion pressure in the pulmonary microvascular bed. They may also affect venous smooth muscle tone. We found no evidence that alpha-adrenergic receptors modulate lung microvascular liquid or protein leakiness directly.  相似文献   

11.
Effects of hypobaria on lung fluid balance were studied in five awake sheep with chronic lung lymph fistulas using a decompression chamber. Each sheep was exposed to three conditions of 6,600-m-simulated high altitude in random order as follows: 1) 6,600-m-simulated hypoxic hypobaria (barometric pressure 326 Torr, 21% inspired O2 fraction), 2) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction), and 3) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction) after pretreatment with a 2-h pure O2 inhalation (i.e., denitrogenation) to allow elimination of dissolved gases, especially N2, from the blood and tissues. We observed that under both hypoxic hypobaria and normoxic hypobaria, lung lymph flow (Qlym) significantly increased from the base-line values of 6.4 +/- 0.3 to 13.0 +/- 1.0 ml/h and 6.0 +/- 0.2 to 9.4 +/- 0.3 ml/h, respectively (P less than 0.05) and that the lymph-to-plasma protein concentration ratio remained unchanged. Moreover, pretreatment with a 2-h denitrogenation inhibited the increase in Qlym. These results suggest that rapid exposure to hypobaria causes an increase in pulmonary vascular permeability and that intravascular air bubble formation may account for this permeability change.  相似文献   

12.
To investigate the acute physiological and structural changes after lung irradiation, the effects of whole-lung irradiation were investigated in fourteen sheep. Ten sheep were prepared with vascular and chronic lung lymph catheters, then a week later were given 1,500 rad whole-lung radiation and monitored for 2 days. Four sheep were given the same dose of radiation and were killed 4 h later for structural studies. Lung lymph flow increased at 3 h after radiation (14.6 +/- 2.1 ml/h) to twice the base-line flow rate (7.5 +/- 1.3), with a high lymph-to-plasma protein concentration. Pulmonary arterial pressure increased twofold from base line (18 +/- 1.6 cmH2O) at 2 h after radiation (33 +/- 3.8). Cardiac output and systemic pressure in the aorta did not change after lung radiation. Arterial O2 tension decreased from 85 +/- 3 to 59 +/- 4 Torr at 1 day after radiation. Lymphocyte counts in both blood and lung lymph decreased to a nadir by 4 h and remained low. Thromboxane B2 concentration in lung lymph increased from base line (0.07 +/- 0.03 ng/ml) to peak at 3 h after radiation (8.2 +/- 3.7 ng/ml). The structural studies showed numerous damaged lymphocytes in the peripheral lung and bronchial associated lymphoid tissue. Quantitative analysis of the number of granulocytes in peripheral lung showed no significant change (base line 6.2 +/- 0.8 granulocytes/100 alveoli, 4 h = 10.3 +/- 2.3). The most striking change involved lung airways. The epithelial lining of the majority of airways from intrapulmonary bronchus to respiratory bronchiolus revealed damage with the appearance of intracellular and intercellular cell fragments and granules. This new large animal model of acute radiation lung injury can be used to monitor physiological, biochemical, and morphological changes after lung radiation. It is relevant to the investigation of diffuse oxidant lung injury as well as to radiobiology per se.  相似文献   

13.
The effects of alpha-naphthylthiourea (ANTU) on lung microvascular permeability to plasma proteins were studied in anesthetized open-chest dogs. Lymph flow (Jv) was recorded, and total protein in plasma and lymph was analyzed after cannulating a small prenodal lung lymphatic. The protocol involved four experimental periods. Period 1. During this base-line period the preparation stabilized and steady states were reached in Jv, lymph total protein, pulmonary arterial pressure (Ppa), and left atrial pressure (Pla). Period 2. Pla was increased to approximately 20 cmH2O and maintained at that level until Jv and protein measurements attained a new steady state. Period 3. After Pla was lowered to control levels, ANTU (5 mg/kg body wt) was infused intravenously and parameters were measured for 3 h. Period 4 Pla was again raised to the pre-ANTU levels of period 2 and maintained for an additional 2-3 h. The lymphatic total protein clearance increased 8.6-fold for an equivalent increase in pulmonary capillary pressure after ANTU. Vascular permeability was assessed by estimating the osmotic reflection coefficient (sigma d) for total protein at the pulmonary capillary membrane. Sigma d decreased from 0.65 to 0.40 following ANTU. From plasma protein fractions in four experiments, equivalent pore radii for the capillary membrane of 95 and 280 A were calculated after ANTU compared with 80 and 200 A for normal lung capillaries. In addition, extravascular lung water increased from 3.8 +/- 0.16 to 5.87 +/- 0.25 following ANTU and to 7.55 +/- 0.55 (g/g blood-free dry wt) when Pla was elevated with ANTU. The experimental design allowed quantitative assessment of the vascular permeability increase after ANTU by use of lymph protein fluxes that had minimal errors due to changes in surface area or lymph contamination from nonpulmonary structures.  相似文献   

14.
Efferent lymph collected from the caudal mediastinal lymph node (CMN) in the sheep lung lymph fistula model has been reported to represent free pulmonary interstitial fluid. Studies that utilize this model assume that nodal transit does not alter the composition of lymph. We collected afferent lymph from the tracheobronchial node (TBN) while simultaneously collecting CMN efferent lymph in acutely prepared sheep. We compared afferent and efferent lymph protein concentrations (CA and CE) and changes in flow rates (QLA and QLE) during base line and periods of elevated left atrial pressure (Pla). As a result of elevated Pla, QLA and QLE increased and the afferent lymph-to-plasma protein concentration ratio (CA/Cp) and the efferent lymph-to-plasma protein concentration ratio (CE/Cp) fell. The CA/Cp was significantly lower than the CE/Cp during base line (0.67 vs. 0.80) and periods of elevated Pla (0.41 vs. 0.61). Although we cannot exclude regional permeability differences, the difference between CA/Cp and CE/Cp is most likely due to the concentration of lymph within the CMN. Our data suggest nodal modification of CA is correlated with the afferent lymph-to-plasma colloid osmotic pressure ratio (pi A/pi p) and further suggest that nodal alteration of lymph during elevated Pla is due to the influence of decreased pi A/pi p at the blood-to-lymph barrier. We conclude that afferent lymph is a more accurate representation of lung free interstitial fluid because collection of pulmonary afferent lymph obviates the complications introduced by the CMN. Studies utilizing efferent lymph may have overestimated lung microvascular permeability in the acute sheep preparation.  相似文献   

15.
Thrombin-induced alterations in lung fluid balance in awake sheep   总被引:5,自引:0,他引:5  
We examined the effect of fibrinolysis depression on thrombin-induced pulmonary microembolism in awake sheep prepared with chronic lung lymph fistulas. Fibrinolysis was depressed by an intravenous infusion (100 mg) of tranexamic acid [trans-4-(Aminomethyl)cyclohexanecarboxylic acid]. Pulmonary microembolism was induced by an intravenous infusion of alpha-thrombin (80 NIH U/kg) in normal (n = 7) and in tranexamic acid-treated (n = 6) sheep. Thrombin immediately increased pulmonary lymph flow (Qlym) in both groups. The increased Qlym was not associated with a change in the lymph-to-plasma protein concentration (L/P) ratio in the control group and with a small decrease in the tranexamic acid-treated group. The increases in Qlym and pulmonary transvascular protein clearance (Qlym X L/P ratio) in the tranexamic acid-treated group were greater and sustained at four- to fivefold above base line for 10 h after the thrombin and remained elevated at twofold above base line even at 24 h. In contrast, Qlym and protein clearance were transiently increased in the control group. The mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) increased after thrombin in tranexamic acid-treated group; the increases in Ppa and PVR in the control group were transient. Protein reflection coefficient as determined by the filtration independent method decreased after thrombin in tranexamic acid-treated sheep (n = 5), indicating an increased vascular permeability to proteins. We conclude that prolongation of microthrombi retention in the pulmonary circulation results in an increased vascular permeability to proteins. Both increased vascular permeability and vascular hydrostatic pressure are important determinants of the increases in Qlym and transvascular protein clearance after thrombin-induced pulmonary microembolism.  相似文献   

16.
The effects of increased hydrostatic pressure on the concentrations of hyaluronan (hyaluronic acid) in lung lymph and serum were investigated in awake sheep with a cannula in the efferent vessel from the caudal mediastinal lymph node. Lung lymph was sampled at base line [left atrial pressure (LAP) 6.5 +/- 1.7 mmHg] and after two increases of LAP to 25.7 +/- 2.2 mmHg (level 1) and 37.0 +/- 5.1 mmHg (level 2). The lung lymph flow increased from 1.9 +/- 0.5 at base line to 9.3 +/- 2.2 and 15.9 +/- 0.7 ml/30 min, and the lymph-to-plasma concentration ratio of total protein decreased from 0.63 +/- 0.02 to 0.32 +/- 0.04 and 0.32 +/- 0.05 at the two elevated levels of LAP, respectively. The hyaluronan concentration in lung lymph was unchanged, and there was a flow-dependent elimination of hyaluronan from the lung that increased from 23 +/- 8 to 87 +/- 19 and 137 +/- 37 micrograms/30 min, respectively. The lung concentration of hyaluronan was 167 +/- 28 micrograms/g fresh lung, and at base line it was calculated that slightly less than 2% of the lung hyaluronan was eliminated by the lymphatic route in 24 h. If extrapolated to 24 h, the elimination rate of hyaluronan seen during elevated LAP would result in lymphatic elimination of 18% of the lung hyaluronan over this time period. Since hyaluronan is responsible for part of the protein exclusion in the extracellular matrix, it is plausible that washout of interstitial hyaluronan contributes to the decrease in albumin exclusion from the interstitium that occurs after an elevation of LAP.  相似文献   

17.
The purpose of this study was to examine the effects of inspiratory airway obstruction on lung fluid balance in newborn lambs. We studied seven 2- to 4-wk-old lambs that were sedated with chloral hydrate and allowed to breathe 30-40% O2 spontaneously through an endotracheal tube. We measured lung lymph flow, lymph and plasma protein concentrations, pulmonary arterial and left atrial pressures, mean and phasic pleural pressures and airway pressures, and cardiac output during a 2-h base-line period and then during a 2- to 3-h period of inspiratory airway obstruction produced by partially occluding the inspiratory limb of a nonrebreathing valve attached to the endotracheal tube. During inspiratory airway obstruction, both pleural and airway pressures decreased 5 Torr, whereas pulmonary arterial and left atrial pressures each decreased 4 Torr. As a result, calculated filtration pressure remained unchanged. Inspiratory airway obstruction had no effect on steady-state lung lymph flow or the lymph protein concentration relative to that of plasma. We conclude that in the spontaneously breathing lamb, any decrease in interstitial pressure resulting from inspiratory airway obstruction is offset by a decrease in microvascular hydrostatic pressure so that net fluid filtration remains unchanged.  相似文献   

18.
We investigated the intrathoracic contributions to the caudal mediastinal lymph node (CMN) efferent lymph in 12 anesthetized sheep after removing possible systemic contributions from below the diaphragm. We interrupted various pathways that may send lymph to the CMN (chest wall, esophagus, lung). Because the experiment is destructive, we did the resections in various combinations and waited 1 h between steps. Base-line CMN efferent lymph flow averaged 0.90 +/- 0.52 g/15 min (mean +/- SD). Cutting the pulmonary ligaments bilaterally caused lymph flow to decrease by an average of 58%. In five sheep, cauterizing around the lung hila reduced lymph flow by 16% of base line, cauterizing along the esophagus reduced lymph flow by 18% of base line, and cauterizing along the chest wall increased lymph flow by 6% of base line. After complete isolation of the node, except for the bronchoesophageal artery, dorsal mediastinal vein, and CMN efferent duct, 14% of base-line flow remained. The lymph-to-plasma total protein concentration ratios did not change significantly with any procedure. Under the conditions of our experiments, approximately 74% of base-line intrathoracic CMN efferent flow comes from the lung.  相似文献   

19.
Changes in pulmonary capillary filtration induced by hyperoxia were investigated in 15 dogs. After 12 h of normobaric hyperoxic exposure, animals were anesthetized and artificially ventilated with 100% O2. A pulmonary lymphatic vessel was cannulated, and lymph flow and protein content were measured together with pulmonary and systemic hemodynamics. An increase in pulmonary capillary filtration was found when compared with reference data (normoxic dogs in similar conditions) gathered from available literature: lymph flow increased from 21.8 +/- 13.4 to 125.2 +/- 131.6 microliter/min, and the lymph-to-plasma protein concentration ratio increased from 0.67 +/- 0.08 to 0.78 +/- 0.08. To characterize the mechanisms involved, left atrial pressure was increased in two stages (approximately 10 and approximately 25 mmHg). The results clearly indicated an increase in pulmonary capillary permeability as evidenced by a decrease of the minimal estimate of the protein reflection coefficient from 0.62 +/- 0.05 to 0.42 +/- 0.05.  相似文献   

20.
We evaluated the ability of the canine in situ left lower lobe (LLL) vasculature to sieve endogenous plasma proteins of various molecular radii (34-124 A) after LLL arterial pressure had been transiently elevated to 23.8 +/- 0.9 (control group, n = 5) or 92.3 +/- 1.4 (SE) Torr (high-pressure group, n = 9) by restricting LLL venous outflow under conditions of constant flow. After LLL flow was returned to natural perfusion, left atrial pressure was elevated in step increments, and LLL lymph and blood samples were collected until filtration-independent lymph-to-plasma protein concentration ratios (CL/CP) were obtained. The osmotic reflection coefficients (sigma d) for total proteins and seven protein fractions (separated by gradient gel electrophoresis) were calculated. The average total protein sigma d of the high-pressure group [0.51 +/- 0.06 (SE)] was significantly lower than that of the control group (0.68 +/- 0.03). Several LLLs of the high-pressure group, however, exhibited normal sigma d's. Protein fraction CL/CP's decreased with increasing molecular radius in both groups, but the CL/CP-molecular radius relationship was displaced upward in the high-pressure group. Pore analysis suggested that the decreases in sigma d could be explained by increases in the fractional flow through a large-pore system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号