首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Land-use change is well documented to cause species loss. However, our understanding of the effects of land-use change on other aspects of biodiversity is still limited. We evaluated if different land-use changes (Eucalyptus plantation and planted pasture) affect ant species and functional groups in similar ways across three Cerrado vegetation types (grassland, savanna and savanna-forest). We found that ant species and functional responses differed with land-use change in relation to frequency of occurrence and habitat specificity and fidelity. Land-use change affected species frequency of occurrence but not functional groups, indicating that species are more sensitive than functional groups to habitat transformation. Native habitats had different indicator species and functional groups compared with converted habitats. However, we did not find functional group indicators of converted habitats in any vegetation type; indicating that there is no specificity and fidelity of functional group to converted habitats and that such an approach is less sensitive to land-use changes. In savanna and savanna-forest, species and functional groups showed the same response in relation to composition with differences between native and converted habitats. Thus, functional groups will be lost when ant species are lost. In grasslands, functional group composition was similar between native and converted habitats indicating a turnover of species within functional groups. We demonstrate that both Eucalyptus plantation and planted pasture affect ant species and functional groups in different ways, with negative impacts both taxonomically and less so functionally. Therefore, we show that the two aspects of biodiversity can respond independently to land-use changes and, hence, the importance of using both taxonomic and functional group approaches to evaluate the effects of land-use change on biodiversity in savanna systems.  相似文献   

3.
Harvestmen have a general distribution pattern with more species and higher abundance in forests than in open habitats, as previously verified in mountain Cantabrian areas of northern Spain, of the Orocantabrian Province. The study of harvestmen of the low Cantabrian areas of the adjacent biogeographic Cantabro-Atlantic Province is highly appropriate to determine the influence of biogeographic position on the main diversity parameters and the effect of different land uses on harvestman assemblages. The main types of managed habitats (forest plantations and secondary grasslands), together with natural forests, non-planted young forests, shrublands and habitat boundaries were continuously sampled with seven pitfall traps during 1 year at 28 sites. The harvestman assemblages were classified using six different analyses, and indicator species were identified. The spatial patterns of harvestman diversity in low areas differed from those of mountain areas, although they have 15 species in common. Remarkably, higher average harvestman species richness was measured in low Cantabrian areas than in mountain areas. Shrublands and boundaries were the most species-rich habitats. Forested areas were the poorest in abundance, and were not the habitats richest in harvestman species, though they had higher average richness than mountain Cantabrian forests. Grasslands had a unique harvestman composition with significant extraordinary abundances, in particular of Homalenotus quadridentatus (indicator species of this habitat) and H. laranderas. Interestingly, H. laranderas, Paroligolophus agrestis and Ischyropsalis hispanica, indicator species of some open habitats in low Cantabrian areas, have recently been shown to be indicators of shady forests in mountain Cantabrian territories.  相似文献   

4.
Fire is frequently used as tool for land management in the Amazon, but often escapes into surrounding forests, with potentially severe impacts for forest biodiversity. We investigated the effects of single wildfires on ant communities in four geographically distinct regions of the Brazilian Amazon (Roraima, Pará, Acre and Mato Grosso) where forests had burned between 8 months and 10 years before our sampling. We established 7–12 transects, 500 m each, in burned and unburned forests in each region to investigate the effects of fire on forest structure and leaf litter ant communities, which were sampled using Winkler sacks. Fire effects on forest structure were more drastic in the most recently burned forests in Acre and Mato Grosso, while the impacts of older burns in Roraima and Pará were more subtle. Ant species richness was not different between burnt and unburned areas, but community composition differed between burned and control forests in all regions except Mato Grosso. At the species level, indicator species analysis showed that a limited number of species were significant indicators of unburned control forests in all regions, except Acre. Forests structure variables and leaf litter volume were all important in shaping ant communities, but their relative importance varied between regions. Our results indicate that burned forest have different ant species communities from unburned forests, and those differences are still apparent 10 years after the disturbance, highlighting the importance of effective policies for fire management in Amazon.  相似文献   

5.
Understanding the factors underlying the distribution of biodiversity is a challenging issue in ecology. Here, we examined the distribution patterns of ectomycorrhizal fungal diversity across the soil profile in three Quercus ilex forests. Contact exploration type strongly dominated at all sites, but was most prevalent in the upper, organic-rich soil layers. At each site, three quarters of the ectomycorrhizal tips and 59 % of taxa were restricted to the ten first centimeters of the soil profile. The relative abundance of the dominant family Russulaceae increased with increasing soil depth. Species composition varied significantly among sites, with most species being rare. Species that occurred in only one of the three sites accounted for 78.9 % of all species, and 57.3 % of species were represented by a single ECM root tip. Our results suggest that (i) rare species at both local and regional scales contribute to the highly diverse fungal assemblages in Mediterranean forests and (ii) multi-sites studies including the whole soil profile are needed to provide comprehensive overviews of the taxonomic and functional diversities of ectomycorrhizal communities.  相似文献   

6.
Aim This is the first comprehensive account of the biogeography of ants transferred and at least temporarily established outside their native habitat. Location Using museum and literature records, I established the distributions of transferred ant species. Methods I used taxonomic and functional groups to assess how geographical spread as a transferred species is affected by taxonomy and life history. Results 147 ant species in forty-nine genera have been recorded outside of their native habitat. The proportion of transferred ants is similar to the number of genera and species in each subfamily. The species-rich subfamily Myrmicinae contains nearly 50% of all transferred species, while many of the species-poor subfamilies have absolutely no transferred species. A disproportionate high number of transferred ants originate from the Neotropical and Oriental biogeographic regions. The Pacific Islands are the recipients of the most transferred ant species. Most transferred ants belong to the CRYPTIC, OPPORTUNIST, and GENERALIZED MYRMICINE functional groups, while there are no recorded transfers of army ants or leaf-cutting ants. Both invasive and human commensal ‘tramp’ ant species are nonrandom subsets of transferred ants. Main conclusions ‘Tramp’ species and invasive species tend to have widespread geographical distributions, and share life history characteristics including queen number, nest structure, and foraging behaviour. Combining observations of functional groups and biogeography may lead to a better understanding of the factors contributing to the spread of transferred species.  相似文献   

7.
8.
Tropical rainforests are characterized by having high structural complexity, stratification, and species diversity. In Colombia, tropical rainforests are critically endangered with only 24% of their area remaining. Forest fragments are often valued based on the presence of vertebrate taxa despite that small habitat remnants may still harbor diverse invertebrate communities. We surveyed the ant fauna associated with rainforest fragments and their surrounding landscape elements (including mature forests, flooded forests, gallery forests, live fences, and pastures) in the Magdalena River watershed. Pitfall traps and litter samples were used to estimate ant richness and diversity, and to compare ant composition among landscape elements. We found 135 species from 42 genera, representing 16% of the species and 43% of the genera known for Colombia. Our surveys also uncovered 11 new ant records for the Colombian inter-Andean region and 2 new records for the country of Colombia: Mycocepurus curvispinosus (Mackay) and Rhopalothrix isthmica (Weber). The highest species richness was found in forest-covered sites, and richness and diversity was lower in the disturbed landscapes surrounding the forest patches. Species composition varied significantly between all habitat types, but was most similar between forest types suggesting that a loss of structural complexity has the greatest effect on ant communities. Across our study sites, ten species showed the greatest response to habitat type and could qualify as indicator taxa for this region. We conclude by discussing the value of conserving even small forests in this landscape due to their ability to retain high diversity of ants.  相似文献   

9.
Determining the prey composition and foraging habitats of U.S. Pacific Coast groundfishes are specified management directives that have not received much scientific attention. To address this knowledge gap, we conducted a meta-analysis of the feeding ecology of 18 commercially important species and their life stages during a recent review of Pacific Coast groundfish essential fish habitat. A Major Prey Index was developed to evaluate relative importance among 47 prey taxa. Based on this metric, unidentified teleosts, euphausiids, and brachyuran crabs were the most important prey groups. When 14 generalized prey categories were used, fishes represented the dominant taxon (mean % weight or volume = 32.3) followed by shrimps (11.5), crabs (10.0), and euphausiids (9.5). PERMANOVA results indicated that species-specific differences were the primary source of dietary variability among tested variables (life stage, functional group, taxonomic group). Pacific Coast groundfishes mainly were characterized as mesopredators with estimated trophic levels ranging from 3.4 to 4.2. Foraging habitats differed significantly among functional (benthic, demersal, pelagic) and taxonomic (elasmobranch, roundfish, rockfish, flatfish) groups. Using hierarchical agglomerative cluster analysis, we identified a significantly distinct trophic guild that consumes mainly polychaetes and hard-shelled molluscs (juvenile, juvenile–adult Dover Sole; juvenile–adult English Sole) and another that specializes on euphausiids (juvenile Pacific Hake; juvenile–adult Darkblotched Rockfish). Our findings filled substantial data gaps in the trophic ecology and habitat-based management of commercially important species and can be used to inform future reviews of Pacific Coast groundfish essential fish habitat.  相似文献   

10.
We radio-tracked Myotis emarginatus in Upper Bavaria, Germany to identify the key-foraging habitats and to enable an adequate habitat management for this endangered species. The studied females foraged at a distance of up to 8.1 km around their colony roost. The average distance of the foraging area was 3.7 km, where 70% of foraging areas were located within a distance of 5 km and 90% within 6 km of the nurseries. Moreover, these bats spent about 75% of their foraging time within 5 km and 85% within a 6-km radius. To reach the foraging areas, the bats usually used riparian woodlands, hedges and tree lines as flight paths. Specifically, 46.9% of the foraging areas were located in forests, 24.5% in cow sheds, 18.4% in riparian woodlands along streams and 10.2% in fields, villages, orchards, hedges and groves on open land. On average, the bats foraged in forests for 56.2% of the time, during which habitat allocation was possible. In cow sheds the percentage was 29.2%, in riparian deciduous woodland 11.5% and in the other habitats 3.1%. Within forests M. emarginatus avoided foraging in spruce monocultures. Pure stands of spruce covered 45% of the total forest area, but only 10% of the foraging areas were located in this forest type. Deciduous forests on the other hand were much more common as foraging sites (40% versus 11%). Therefore, the availability of native deciduous forest and of fly-infested stables within a radius of 6 km around the colony roosts should be the focus of conservation concepts for M. emarginatus.  相似文献   

11.
Fire is an important component of many natural ecosystems affecting plant communities and arthropods by mortality during combustion and/or indirectly through the modification of the habitat. The Iberá Natural Reserve (INR) is one of the most diverse ecosystems in northern Argentina; it is dominated by grasslands commonly affected by disturbances, such as grazing and fire. The objective of this work was to study the response of ground-foraging ant assemblages, particular species, and functional groups to an extended fire of high intensity in four natural INR habitats with >5 years of cattle exclusion (strict conservation area). A total of 12,798 ant workers of 67 species were captured in 39 sampling stations. The ant fauna was less abundant in burned sites only a few days after the fire; 6 months later, no effect was detected. Richness and abundance of ants differed among unburned habitats. However, fire effect on species richness and composition remained unclear. The rapid recovery of the ant fauna made these insects poor indicators of long-term fire-promoted changes on biodiversity in open habitats dominated by grassland, though some ant species showed a high level of habitat fidelity mainly in unburned habitats. These results agree with those from other areas of the world, indicating that ants are particularly unreliable biodiversity indicators, with the exception of severe disturbance with long-term habitat restoration. Management decisions at the INR should be oriented to preserve the closed savanna, one of the most diverse and threatened habitat of Argentina.  相似文献   

12.
Rampant deforestation has caused the loss and fragmentation of natural habitats, which has precipitated a global biodiversity crisis. Research on how land-use change contributes to a loss of biodiversity is urgently needed, especially in ecosystems that have undergone rapid anthropogenic changes. We sought to investigate the extent to which habitat loss, fragmentation, and habitat split (the separation of forest and aquatic habitats) negatively influenced taxonomic diversity, functional diversity, total abundance, and the individual abundances of five anuran species in the Brazilian Cerrado. We sampled anurans between December 2017 and March 2018 using pitfall traps at sites distributed along a gradient of habitat fragmentation/habitat split: unfragmented forest, forest fragments without habitat split, and forest fragments with habitat split. Forest cover was measured within a 1-km radius of each site. Sites within unfragmented forests had higher taxonomic and functional diversities than either fragment type. Taxonomic diversity was highly correlated with functional diversity, but we did not find a pattern to the loss of functional traits. Total anuran abundance and the abundances of Chiasmocleis albopunctata, Physalaemus cuvieri, and Rhinella diptycha were higher in unfragmented forests compared to forest fragments. No species was more abundant in fragments than in unfragmented forests. Our results indicate that the fragmentation of forests by agricultural land use is directly and indirectly responsible for the loss of taxonomic and functional diversity, as well as for reducing population sizes of ground-dwelling anurans. Although we did not find a distinct effect of habitat split on ground-dwelling anurans, our study underscores the importance of preserving continuous forest habitats for the maintenance of anuran diversity in the Cerrado.  相似文献   

13.
In migratory species, the way in which conspecifics from different breeding populations are distributed during the non‐breeding period is important from and ecological, evolutionary and conservation perspective, but such knowledge is still limited for most species. Migratory and sedentary blackcaps Sylvia atricapilla wintering in southern Spain can occupy two habitat types: forests and shrublands. According to earlier studies, blackcaps prefer forests over shrublands, and residents remain nearly restricted to forests. However, whether migrants with different breeding origin occupy the two habitats differently is unknown. We used morphological and biogeochemical data (hydrogen isotope ratios measured on feathers: δ2Hf), which show variation along the breeding range of the species, to answer this question. Isotope analyses supported the reliability of morphology as a method for distinguishing between migratory and sedentary blackcaps in sympatry, showing that sedentary individuals are rare in shrublands while migratory ones are abundant in both habitat types. However, migratory blackcaps scored similar δ2Hf values in forests and shrublands, and neither did vary in structural size or flight morphology between habitats. Our study suggests that migrants from a wide range of breeding origins end up mixing between forests and shrublands, which may explain the patterns of variation in space and time in the abundance of blackcaps in this area, and supports the view that inequalities may arise among migrants with the same origin but wintering in different habitats. Such inequalities might carry over into other stages of blackcaps’ life cycle contributing to the regulation of its migratory populations.  相似文献   

14.
How does tree species composition vary in relation to geographical and environmental gradients in a globally rare tropical/subtropical broadleaf dry forest community in the Caribbean? We analyzed data from 153 Forest Inventory and Analysis (FIA) plots from Puerto Rico and the U.S. Virgin Islands (USVI), along with 42 plots that we sampled in the Bahamian Archipelago (on Abaco and Eleuthera Islands). FIA data were collected using published protocols. In the Bahamian Archipelago, we recorded terrain and landscape variables, and identified to species and measured the diameter of all stems ≥5 cm at 1.3 m height in 10 m radius plots. All data were analyzed using clustering, ordination, and indicator species analysis at regional and local scales. Regionally, the largest cluster group included over half of all plots and comprised plots from all three island groups. Indicator species were native Bursera simaruba (Burseraceae) and Metopium toxiferum (Anacardiaceae). Species composition was similar to dry forests throughout the region based on published studies. Other groups we identified at the regional scale consisted of many Puerto Rico and USVI plots that were dominated by non-native species, documenting the widespread nature of novel ecosystems. At the local scale the Bahamian data clustered into two main groups corresponding largely to the two islands sampled, a pattern consistent with the latitudinal aridity gradient. Bahamian dry forests share previously undocumented compositional similarity with native-dominated dry forests found throughout the Caribbean, but they lack extensive post-disturbance novel dry forests dominated by non-native trees found in the Greater Antilles.  相似文献   

15.
Agricultural practices lead to losses of natural resources and biodiversity. Maintaining forests alongside streams (riparian forest strips) has been used as a mechanism to minimize the impact of clearing for agriculture on biodiversity. To test the contribution of riparian forest strips to conserve biodiversity in production landscapes, we selected bats as a biodiversity model system and examined two dimensions of diversity: taxonomic and functional. We compared bat diversity and composition in forest, with and without stream habitat, and in narrow forest riparian strips surrounded by areas cleared for agriculture. We tested the hypothesis that riparian forest strips provide potential conservation value by providing habitat and serving as movement corridors for forest bat species. Riparian forest strips maintained 75% of the bat species registered in forested habitats. We found assemblage in sites with riparian forest strips were dominated by a few species with high abundance and included several species with low abundance. Bat species assemblage was more similar between sites with streams than between those sites to forests without stream habitat. These results highlight the importance of stream habitat in predicting presence of bat species. We registered similar number of guilds between forest sites and riparian forest strips sites. Relative to matrix habitats, stream and edge habitats in riparian forest strips sites were functionally more diverse, supporting our hypothesis about the potential conservation value of riparian forest strips. Results from this study suggest that maintaining riparian forest strips within cleared areas for agricultural areas helps conserve the taxonomic and functional diversity of bats. Also, it provides basic data to evaluate the efficacy of maintaining these landscape features for mitigating impacts of agricultural development on biodiversity. However, we caution that riparian forest strips alone are not sufficient for biodiversity maintenance; their value depends on maintenance of larger forest areas in their vicinity.  相似文献   

16.
The use of bioindicators of habitat condition can help to better understand the effects of tropical forest degradation and the efficacy of strategies used in the restoration of these lands. The differences in feeding behavior of the ponerine ant Paraponera clavata may serve as such an indicator. The findings from the current study showed that P. clavata in an undisturbed primary forest returned to the nest with prey, nectar, and plant materials, while none of the ants within a 14 year old regenerating secondary forest returned with prey or nectar, few with plant materials, and most of the returns were unsuccessful in their foraging. This suggests a difference in P. clavata feeding behavior and/or food selection is occurring in the disturbed habitat; that P. clavata from the primary forest nest examined in the current study are feeding at a higher trophic level; and that the ants in the primary forest appeared to be more successful and efficient foragers than those in the secondary forest. Future studies should involve more comparisons of P. clavata foraging behavior in secondary to primary forests to determine if the patterns described in this current study are consistent with disturbance in these tropical forests in order to evaluate the possibility of this use of P. clavata as a valuable tool for bioindicators of habitat damage.  相似文献   

17.
Abstract

To investigate the differences in understorey composition and diversity between old-growth and managed forests, we analyzed an old-growth and a managed beech stand in the same area displaying similar abiotic features. We considered variations in understorey species composition and richness. The sampled understorey species were characterized in terms of functional traits, Ellenberg's indicator values and taxonomic distinctness; next, we calculated four different pairwise plot-to-plot dissimilarity matrices based on species composition, functional traits, Ellenberg's indices and taxonomic distances. We applied a permutational multivariate extension of ANOVA to test whether the forest stands significantly differ in the considered features. Indicator values of all plant species in managed and old-growth stands were evaluated.

The old-growth forest had a higher species richness; permutational analysis of variance showed significant differences between the two stands in plant species composition, functional traits, Ellenberg indices and taxonomic distances. Indicator species analysis highlighted 14 indicator species for the unmanaged stand, while only 3 indicators were found for the managed one.

The results suggest that forest management determines ecological differences that strongly affect plant species composition.

The knowledge of natural stands dynamics could allow development of new approaches and practices in forest management focusing on biodiversity conservation.  相似文献   

18.
1. Changes in vegetation community composition, such as a transition from grassland to shrubland (woody encroachment), are associated with reductions in plant cover and increases in bare ground. Encroachment‐driven changes in surface cover at small spatial scales can alter ant community assemblages by changing their foraging behaviour and their ability to locate and monopolise resources. 2. Artificial arenas with three levels of complexity were used to examine changes in ant foraging efficiency, body size and ability to monopolise food. The three levels of complexity included a control (no substrate), low‐complexity treatment (woody debris) and high‐complexity treatment (leaf litter). 3. No difference was found in ant species composition within the complexity arenas between grassland and shrubland, but ant functional groups ‘generalised Myrmicinae’ and ‘subordinate Camponotini’ were more abundant in grassland arenas, whereas ‘opportunists’ were more abundant in shrubland arenas. Ants took twice as long to find baits in high‐complexity treatments, and 1.5 times as long in low‐complexity treatments, than in control treatments, which were bare arenas with no substrate. Ant body size declined with increasing surface complexity, suggesting that larger ants are discouraged from foraging in complex habitats. 4. There was also significantly greater monopolisation of the protein bait (tuna) in low‐ and high‐complexity treatments, but there were no differences between tuna and carbohydrate (honey) in the control treatment. Consistently, no differences were found in ant behaviour between grasslands and shrublands. 5. The present study shows that ants are more responsive to small‐scale alterations in soil surface complexity than to changes in vegetation community composition. Changes in soil surface complexity select for ants based on body size, which in turn influences their foraging success. Changes in vegetation complexity at small spatial scales are therefore likely to influence ant behaviour and abundance of some functional groups, potentially having an effect on the many ecosystem functions carried out by ants.  相似文献   

19.
Naturally dynamic forests have a high proportion of biotopes with old large trees, diverse vertical and horizontal structure at multiple scales, and much dead wood. As such, they provide habitat to species and ecosystem processes that forests managed for wood production cannot provide to the same degree. Whether termed old-growth, ancient, virgin, intact, primeval or continuity forests, a major challenge and need is to map such potential high conservation value forest for subsequent inclusion in functional habitat networks for biodiversity conservation in forest landscapes. Given that the delivery time of natural forest properties is much longer than of industry wood, we explore the usefulness of using historical maps to identify forests that have been continuously present for 220 years (potential old-growth) versus 140 years (potential aging forest) in a case study in the Romanian Carpathian Mountains (see Online Resource 1). While the total forest cover increased by 35 % over the past two centuries, the area of potential aging and potential old-growth forest declined by 56 and 34 %, respectively. Spatial modelling of edge effects and patch size for virtual species with different requirements indicated an even greater decrease in the area of functional habitat networks of old-growth and ageing forest. Our analyses show that compared to simple mapping of potential high conservation forests, the area of functional habitat patches is severely overestimated, and caution is needed when estimating the area of potential high conservation value forests that form functional habitat networks, i.e. a green infrastructure. In addition, the landscape and regional scale connectivity of patches needs to be considered. We argue that the use of historical maps combined with assessment of spatial patterns is an effective tool for identifying and analyzing potential high conservation value forests in a landscape context.  相似文献   

20.
We investigated the effects of the abiotic environment, plant community composition and disturbance by fire on ant assemblages in two distinct habitat types in the Siskiyou Mountains in northern California and southern Oregon, USA. Sampling over 2 years in burned and unburned Darlingtonia fens and their adjacent upland forests, we found that the effects of disturbance by fire depended on habitat type. In forests, fire intensity predicted richness in ant assemblages in both years after the fire, and plant community composition predicted richness 2 years after the fire. No factors were associated with richness in the species‐poor fen ant assemblages. Species‐specific responses to both habitat type and disturbance by fire were idiosyncratic. Assemblage composition depended on habitat type, but not disturbance by fire, and the composition of each assemblage between years was more dissimilar in burned than unburned sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号