首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
For porcine myocardium, ultrasonic regional deformation parameters, systolic strain (epsilon(sys)) and peak systolic strain rate (SR(sys)), were compared with stroke volume (SV) and contractility [contractility index (CI)] measured as the ratio of end-systolic strain to end-systolic wall stress. Heart rate (HR) and contractility were varied by atrial pacing (AP = 120-180 beats/min, n = 7), incremental dobutamine infusion (DI = 2.5-20 microg. kg(-1). min(-1), n = 7), or continuous esmolol infusion (0.5 mg. kg(-1). min(-1)) + subsequent pacing (120-180 beats/min) (EI group, n = 6). Baseline SR(sys) and epsilon(sys) averaged 5.0 +/- 0.4 s(-1) and 60 +/- 4%. SR(sys) and CI increased linearly with DI (20 microg. kg(-1). min(-1); SR(sys) = 9.9 +/- 0.7 s(-1), P < 0.0001) and decreased with EI (SR(sys) = 3.4 +/- 0.1 s(-1), P < 0.01). During pacing, SR(sys) and CI remained unchanged in the AP and EI groups. During DI, epsilon(sys) and SV initially increased (5 microg. kg(-1). min(-1); epsilon(sys) = 77 +/- 6%, P < 0.01) and then progressively returned to baseline. During EI, SV and epsilon(sys) decreased (epsilon(sys) = 38 +/- 2%, P < 0.001). Pacing also decreased SV and epsilon(sys) in the AP (180 beats/min; epsilon(sys) = 36 +/- 2%, P < 0.001) and EI groups (180 beats/min; epsilon(sys) = 25 +/- 3%, P < 0.001). Thus, for normal myocardium, SR(sys) reflects regional contractile function (being relatively independent of HR), whereas epsilon(sys) reflects changes in SV.  相似文献   

2.
The clinical evaluation of right ventricular (RV) contractility is problematic because instantaneous RV volumetry is difficult to achieve. Our aim was to test whether global RV contractility can be assessed by using regional indexes in the longitudinal and/or circumferential axis. Six anesthetized adult ewes were instrumented with a RV conductance catheter and four RV free wall sonomicrometry crystals (interrogating the longitudinal and circumferential axes). Global and regional preload recruitable stroke work (PRSW) were measured by using acute vena cava occlusions at baseline, during esmolol and dobutamine infusion, and during stable low-preload and high-afterload conditions. The agreement between regional and global PRSW was assessed with regression and Bland-Altman analysis. Both regional PRSW indexes correlated well with global PRSW in baseline conditions, during inotropic modulation (R(2) = 0.83 and 0.74 for longitudinal and circumferential regional PRSW, respectively), and during preload reduction (R(2) = 0.62 and 0.83, respectively), but only longitudinal regional PRSW correlated with global PRSW in increased afterload conditions (R(2) = 0.59 and 0.13 for longitudinal and circumferential regional PRSW, respectively). We conclude that in the open-chest, open-pericardium animal model, deformation in the longitudinal axis accurately reflects global RV contractile function in baseline conditions and during acute load modulation, whereas circumferential motion is influenced by changes in afterload.  相似文献   

3.
This investigation determined the effect of different rates of dehydration, induced by ingesting different volumes of fluid during prolonged exercise, on hyperthermia, heart rate (HR), and stroke volume (SV). On four different occasions, eight endurance-trained cyclists [age 23 +/- 3 (SD) yr, body wt 71.9 +/- 11.6 kg, maximal O2 consumption 4.72 +/- 0.33 l/min] cycled at a power output equal to 62-67% maximal O2 consumption for 2 h in a warm environment (33 degrees C dry bulb, 50% relative humidity, wind speed 2.5 m/s). During exercise, they randomly received no fluid (NF) or ingested a small (SF), moderate (MF), or large (LF) volume of fluid that replaced 20 +/- 1, 48 +/- 1, and 81 +/- 2%, respectively, of the fluid lost in sweat during exercise. The protocol resulted in graded magnitudes of dehydration as body weight declined 4.2 +/- 0.1, 3.4 +/- 0.1, 2.3 +/- 0.1, and 1.1 +/- 0.1%, respectively, during NF, SF, MF, and LF. After 2 h of exercise, esophageal temperature (Tes), HR, and SV were significantly different among the four trials (P < 0.05), with the exception of NF and SF. The magnitude of dehydration accrued after 2 h of exercise in the four trials was linearly related with the increase in Tes (r = 0.98, P < 0.02), the increase in HR (r = 0.99, P < 0.01), and the decline in SV (r = 0.99, P < 0.01). LF attenuated hyperthermia, apparently because of higher skin blood flow, inasmuch as forearm blood flow was 20-22% higher than during SF and NF at 105 min (P < 0.05). There were no differences in sweat rate among the four trials. In each subject, the increase in Tes from 20 to 120 min of exercise was highly correlated to the increase in serum osmolality (r = 0.81-0.98, P < 0.02-0.19) and the increase in serum sodium concentration (r = 0.87-0.99, P < 0.01-0.13) from 5 to 120 min of exercise. In summary, the magnitude of increase in core temperature and HR and the decline in SV are graded in proportion to the amount of dehydration accrued during exercise.  相似文献   

4.
The purpose of this study was to examine the association among electromyographic (EMG) activity, recovery blood flow, and the magnitude of the autonomic adjustments to rhythmic exercise in humans. To accomplish this, 10 healthy subjects (aged 23-37 y) performed rhythmic handgrip exercise for 2 min at 5, 15, 25, 40, and 60% of maximal voluntary force. Heart rate and arterial blood pressure were measured at rest (control), during each level of exercise, and for 2 min following exercise (recovery). The rectified, filtered EMG activity of the exercising forearm was measured continuously during each level of exercise and was used as an index of the level of central command. Post-exercise hyperemia was calculated as the difference between the control and the average recovery (2 min) forearm blood flows (venous occlusion plethysmography) and was examined as a possible index of the stimulus for muscle chemoreflex activation. Heart rate, arterial pressure, forearm EMG activity, and post-exercise hyperemia all increased progressively with increasing exercise intensity. The magnitudes of the increases in heart rate and arterial pressure from control to exercise were directly related to both the level of EMG activity and the degree of post-exercise hyperemia across the five exercise intensities (delta heart rate vs EMG activity: r = 0.99; delta arterial pressure vs EMG activity: r = 0.99; delta heart rate vs hyperemia: r = 0.99; and delta arterial pressure vs hyperemia: r = 0.98; all p less than 0.01). Furthermore, the level of EMG activity was directly related (r = 0.99) to the corresponding degree of hyperemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We developed a mathematical model describing the interaction between the heart and the arterial system. The model was constructed and tested on basis of invasive hemodynamic data in six sheep. Data from a first group of three animals (49 cardiac cycles) were used to assess a template time-varying elastance curve for the left ventricle, while the baseline steady-state data of a second group of three animals were used to assess reference cardiac and arterial parameters in sheep. The model is fully characterized by nine parameters, which were converted into 6 dimensionless numbers using the Buckingham pi theorem. The model was then used to generate LV pressure and volume and aortic pressure and flow for 86 conditions obtained by varying parameters 50 to 200% of their reference value. Systolic (SBP) and diastolic (DBP) blood pressure and stroke volume (SV) were determined from these model-generated curves and multiple linear regression analysis yielded the following expressions: SBP = Pisovolumic [0.638 - 0.0773 Emax C + 0.0507 RC/T] (r2 = 0.89); DBP = Pisovolumic [0.438-0.0712 Emax C + 0.0655RC/T] (r2 = 0.88) and SV = LVEDV [1.265-1.040 LVEDV/(LVEDV - Vd) + 0.125 Emax C-0.0777RC/T] (r2 = 0.93) with Pisovolumic = Emax (LVEDV - Vd), Emax and Vd being the slope and intercept of the end-systolic pressure-volume relation, R and C the total peripheral resistance and compliance, LVEDV the left ventricular end-diastolic volume, and T the cardiac cycle length. These expressions were validated using data from the second group of three animals obtained during vena cava occlusion at baseline and during administration of dobutamine (61 cycles). The correlation between measured and predicted values was 0.98, 0.97 and 0.92 for SBP, DBP and SV, respectively. Compared to the measured values, SBP and DBP were, on average, underestimated by 5 and 6mmHg, respectively, and SV overestimated by 1.4 ml. We conclude that the derived expressions for blood pressure and stroke volume remain valid in the intact sheep for various hemodynamic conditions, and, taking into account their dimensionless form, may hold in other species and in humans.  相似文献   

6.
The Tei index is clinically useful to quantify left ventricular (LV) function, but it requires sequential Doppler recordings from two different views. A related myocardial performance index (MPI) using tissue Doppler (TD) can be rapidly calculated from a single beat; however, its ability to quantify contractility and the effects of acute changes in loading have not been determined. Our aim was to test the hypothesis that TD MPI can quantify contractile state but is affected by acute alterations in loading, using LV pressure-volume relations in an animal model. Eight dogs were studied by using mitral annular TD, high-fidelity pressure, and conductance catheters. TD MPI was calculated as (a' - b')/b', where a' was the duration of mitral annular velocity during diastole and b' was the duration of the systolic wave. End-systolic elastance (Ees), the time constant of isovolumic relaxation (tau), and peak positive and negative first derivative of pressure (dP/dtmax and dP/dtmin, respectively) were used as measures of LV function. Data were obtained at baseline, at dobutamine and esmolol infusion to alter contractile state, and at inferior vena cava and aortic occlusion to alter preload and afterload. TD MPI decreased from 0.83 (SD 0.19) to 0.62 (SD 0.20) with dobutamine and increased to 1.19 (SD 0.26) with esmolol. TD MPI significantly correlated with dP/dtmax (r = -0.76), Ees (r = -0.68), dP/dtmin (r = 0.82), and tau (r = 0.78); however, it was affected by acute decreases in preload [from 0.83 (SD 0.19) to 1.09 (SD 0.36)] and acute increases in afterload [to 1.23 (SD 0.17)]. All the above increases and decreases and r values were significant (P < 0.05 vs. baseline). In conclusion, TD MPI can rapidly quantify alterations in LV contractile state but is affected by acute alterations in preload and afterload.  相似文献   

7.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

8.
This study examined the relationships between selected kinematic and physiological parameters and their influence on performance during incremental exercise in elite swimmers competing at the international level. Eleven men and ten women (all specialized in 200-m events) performed an incremental 7 x 200-m test in their specialized stroke. Stroke rate (SR), stroke length (SL), velocity (V), and blood lactate concentration (BLa) were measured for each 200 m. In addition to the cross-sectional group design, the longitudinal performance of a male swimmer was evaluated by 4 tests during a period of 20 weeks. Stroke rate increased and SL decreased with V, regardless of the age, stroke, or gender of the swimmer. Statistically significant correlations were found between SR and V (p < 0.01; r = 0.66 to 0.99), SR and SL (p < 0.01; r = -0.78 to -0.99), SL and V (except for women's freestyle and breaststroke) (p < 0.01; r = -0.67 to -0.98), and BLa and V (p < 0.01; r = 0.7 to 0.96). Changes in SR and SL were not affected by changes in BLa. Similar velocities were produced with different combinations of SR and SL. The fastest times reached in the test were generally slower than expected, and the performance in the test was not associated with competition performance. The case study revealed similar results to those of the group. The test used in this study was informative with respect to identifying the most economical and effective stroke kinematics combination for slow to submaximal velocities. It is possible that the swimming speeds were not maximal in the final 200-m swim because of cumulative fatigue, which is a major limitation for assessing race pace. An additional test that produces velocities similar to those used in competitions would be more useful for the purpose of providing optimal kinematic information specific to racing speeds, which would facilitate performance improvement through regular monitoring in training.  相似文献   

9.
Hypoxia in fish is generally associated with bradycardia while cardiac output (Q) remains unaltered or slightly increased due to a compensatory increase in stroke volume (SV). Rainbow trout (Oncorhynchus mykiss) were subjected to severe (P(W)O2=7.3+/-0.2 kPa) or mild (P(W)O2=11.5+/-0.2 kPa) hypoxia. Central venous pressure (P(ven)), dorsal aortic pressure (P(da)), heart rate (f(H)) and Q, were recorded in vivo. Both levels of hypoxia triggered a significant increase in P(ven). Severe hypoxia was associated with bradycardia and unaltered Q, whereas mild hypoxia was associated with a small but significant increase in Q and no bradycardia. These findings indicate that an increase in P(ven) promotes an increase in SV during hypoxia. Since mild hypoxia increased P(ven), Q and SV without bradycardia or reduced systemic resistance (R(sys)), we hypothesize that an active increase in venous tone serving to mobilize blood to the central venous compartment in order to increase cardiac preload and consequently SV, is an important cardiovascular trait associated with hypoxia. Pharmacological pre-treatment with prazosin (1 mg kg(-1)) did not conclusively reveal the underlying mechanisms to the observed changes in P(ven). This study discusses the influence of venous pooling, reduced R(sys) and altered venous tone on changes in P(ven) observed during hypoxia.  相似文献   

10.
It has been postulated that during fetal hypoxia, the blood flow shunted through the ductus venosus increases and may account for upto 70% of the total umbilical flow. The objectives of the present study were to use ultrasonography to determine the velocities and waveform indices of blood flow in the ductus venosus in the fetal lamb. The ductus venosus of 15 lamb fetuses was evaluated weekly from Days 45 to 143 of gestation (Day 0=day of AI). The Doppler indices measured were: S/D, the systole/diastole ratio; RI, the resistance index; and PI, the pulsatility index. The velocity waveforms studied were: SV, the peak velocity during ventricular systole; D, the peak velocity during ventricular diastole; aV, the lowest forward velocity during atrial contraction; and TAMV, the time-averaged maximum velocity. Doppler indices from Days 52 to 143 were highly correlated: S/D versus PI (r=0.96, P<0.0001), and versus RI (r=0.93, P<0.0001); and PI versus RI (r=0.97, P<0.0001). Velocity indices were also positively correlated: velocity SV versus D (r=0.87, P<0.0001), versus aV (r=0.79, P<0.05), and versus TAMV (r=0.98, P<0.0001); D versus aV (r=0.88, P<0.05), and versus TAMV (r=0.87, P<0.05); and aV versus TAMV (r=0.82, P<0.05). Doppler indices were negatively correlated with SV (r=-0.22, P<0.03); D (r=-0.37, P<0.0001); TAMV (r=-0.32, P<0.05) and with aV (r=-0.67, P<0.05). The mean value of each Doppler index decreased 40% from Days 52 to 73 (e.g., PI from 0.82+/-0.08 to 0.51+/-0.10; P<0.05), with no significant changes thereafter. Mean (+/-S.E.M.) values of velocity indices SV, D, aV, and TAMV rose twofold from Days 60 to 115 of gestation (e.g., SV from 54.4+/-8.8cm/s to 104.9+/-19.7 and aV from 24.8+/-6.9 to 54.9+/-5.9; P<0.05). In conclusion, Doppler ultrasonography facilitated assessment of the blood flow pattern in the ductus venosus in lamb fetuses between Days 52 and 143.  相似文献   

11.
The effects of varying degrees of passive stretch on in vitro oxygen consumption and intracellular lactate efflux have been investigated in paired recti abdomini muscles from small male frogs. Oxygen consumption [mm3 (STP)/mg (dry wt)/hr] was found to be linearly related to load (r = 0.98), increasing from 1.57 +/- 0.11 (SE) at 2 g to 2.30 +/- 0.18 at 10 g, 2.89 +/- 0.16 at 20 g and 3.26 +/- 0.21 at 30 g. Lactate released into the medium [microM/g (dry wt)/hr] was inversely related to load (r = -0.52), increasing initially from 36.84 +/- 3.28 (SE) at 2 g to 108.55 +/- 12.9 at 10 g, then abruptly decreasing with additional loading (18.10 +/- 2.60 at 20 g and 11.71 +/- 2.80 at 30 g). Results suggest that as stretch-related oxidative energy metabolism increases, there is a lessening dependence on anaerobic energy-yielding processes.  相似文献   

12.
S H Lin  H C Cheung 《Biochemistry》1991,30(17):4317-4322
We previously reported that the nucleotide complex of myosin subfragment 1, S1.epsilon ADP, exists in two states on the basis of the temperature dependence of the fluorescence decay of bound 1,N6-ethenoadenosine diphosphate (epsilon ADP) [Aguirre, R., Lin. S.-H., Gonsoulin, F., Wang, C.-K., & Cheung, H.C. (1989) Biochemistry 28, 799-809]. We have extended the previous study of the equilibrium between the two states, S1L.ADP in equilibrium S1H.ADP, by using a fluorescently labeled myosin S1 (S1-AF). In S1 alkylated with IAF [5-(iodoacetamido)fluorescein], the decay of the label emission was biexponential both in the presence and absence of ADP and/or actin. In the presence of ADP, the two decay times were 4.30 (alpha 1 = 0.55) and 0.80 ns (alpha 2 = 0.45) at 12.4 degrees C, in a medium containing 60 mM KCl, 30 mM TES (pH 7.5), and 2 mM MgCl2. The steady-state fluorescence intensities of S1-AF, (S1-AF).ADP, acto.(S1-AF), and acto.(S1-AF).ADP were dependent on temperature over the range of 5-30 degrees C. By combining lifetime and steady-state intensity data, we obtained for the two-state transition (S1-AF)L.ADP in equilibrium (S1-AF)H.ADP the following parameters: delta H degrees = 16.1 kcal/mol (67.3 kJ/mol) and delta S degrees = 55.8 cal/(deg.mol) [233.5 J/(deg.mol)], in agreement with previous results obtained with epsilon ADP. The delta H degrees values for the two-state transition of S1-AF, acto.(S1-AF), and acto.(S1-AF).ADP are 13.0, 21.6, and 5.2 kcal/mol, respectively. The corresponding delta S degrees values are 46.9, 79.5, and 17.4 cal/(deg.mol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Exaggerated inspiratory swings in intrathoracic pressure have been postulated to increase left ventricular (LV) afterload. These predictions are based on measurements of LV afterload by use of esophageal or lateral pleural pressure. Using direct measurements of pericardial pressure, we reexamined respiratory changes in LV afterload. In 11 anesthetized vagotomized dogs, we measured arterial pressure, LV end-systolic (ES) and end-diastolic transmural (TM) pressures, stroke volume (SV), diastolic left anterior descending blood flow (CBF-D), and coronary resistance. Dogs were studied before and while breathing against an inspiratory threshold load of -20 to -25 cmH2O compared with end expiration. Relative to end expiration, SV and LVES TM pressures decreased during inspiration and increased during early expiration, effects exaggerated during inspiratory loading. In all cases, LV afterload (LVES TM pressure) changed in parallel with SV. LV end-diastolic TM pressure did not change. CBF-D paralleled arterial pressure, and there were no changes in coronary resistance. In two dogs, regional LVES segment length paralleled calculated changes in LVES TM pressure. We conclude that 1) LV afterload decreases during early inspiration and increases during early expiration, changes secondary to those in SV; 2) changes in CBF-D are secondary to changes in perfusion pressure during the respiratory cycle; and 3) the use of esophageal or lateral pleural pressure to estimate LV surface pressure overestimates changes in LV TM pressures during respiration.  相似文献   

14.
Because of similar physiological changes such as increased left ventricular (LV) afterload and sympathetic tone, an exaggerated depression in cardiac output (CO) could be expected in patients with coexisting obstructive sleep apnea and congestive heart failure (CHF). To determine cardiovascular effects and mechanisms of periodic obstructive apnea in the presence of CHF, 11 sedated and chronically instrumented pigs with CHF (rapid pacing) were tested with upper airway occlusion under room air breathing (RA), O(2) breathing (O2), and room air breathing after hexamethonium (Hex). All conditions led to large negative swings in intrathoracic pressure (-30 to -39 Torr) and hypercapnia (PCO(2) approximately 60 Torr), and RA and Hex also caused hypoxia (to approximately 42 Torr). Relative to baseline, RA increased mean arterial pressure (from 97.5 +/- 5.0 to 107.3 +/- 5.7 Torr, P < 0.01), systemic vascular resistance, LV end-diastolic pressure, and LV end-systolic length while it decreased CO (from 2.17 +/- 0.27 to 1.52 +/- 0.31 l/min, P < 0.01), stroke volume (SV; from 23.5 +/- 2.4 to 16.0 +/- 4.0 ml, P < 0.01), and LV end-diastolic length (LVEDL). O2 and Hex decreased mean arterial pressure [from 102.3 +/- 4.1 to 16.0 +/- 4.0 Torr (P < 0.01) with O2 and from 86.0 +/- 8.5 to 78.1 +/- 8.7 Torr (P < 0.05) with Hex] and blunted the reduction in CO [from 2.09 +/- 0.15 to 1.78 +/- 0.18 l/ml for O2 and from 2.91 +/- 0.43 to 2.50 +/- 0.35 l/ml for Hex (both P < 0.05)] and SV. However, the reduction in LVEDL and LV end-diastolic pressure was the same as with RA. There was no change in systemic vascular resistance and LVEDL during O2 and Hex relative to baseline. In the CHF pigs during apnea, there was an exaggerated reduction in CO and SV relative to our previously published data from normal sedated pigs under similar conditions. The primary difference between CHF (present study) and the normal animals is that, in addition to increased LV afterload, there was a decrease in LV preload in CHF contributing to SV depression not seen in normal animals. The decrease in LV preload during apneas in CHF may be related to effects of ventricular interdependence.  相似文献   

15.
The respiratory inductance plethysmograph (RIP) has recently gained popularity in both the research and clinical arenas for measuring tidal volume (VT) and changes in functional residual capacity (delta FRC). It is important however, to define the likelihood that individual RIP measurements of VT and delta FRC would be acceptably accurate (+/- 10%) for clinical and investigational purposes in spontaneously breathing individuals on continuous positive airway pressure (CPAP). Additionally, RIP accuracy has not been compared in these regards after calibration by two commonly employed techniques, the least squares (LSQ) and the quantitative diagnostic calibration (QDC) methods. We compared RIP with pneumotachographic (PTH) measurements of delta FRC and VT during spontaneous mouth breathing on 0-10 cmH2O CPAP. Comparisons were made after RIP calibration with both the LSQ (6 subjects) and QDC (7 subjects) methods. Measurements of delta FRC by RIPLSQ and RIPQDC were highly correlated with PTH measurements (r = 0.94 +/- 0.04 and r = 0.98 +/- 0.01 (SE), respectively). However, only an average of 30% of RIPQDC determinations per subject and 31.4% of RIPLSQ determinations per subject were accurate to +/- 10% of PTH values. An average of 55.2% (QDC) and 68.8% (LSQ) of VT determinations per subject were accurate to +/- 10% of PTH values. We conclude that in normal subjects, over a large number of determinations, RIP values for delta FRC and VT at elevated end-expiratory lung volume correlate well with PTH values. However, regardless of whether QDC or LSQ calibration is used, only about one-third of individual RIP determinations of delta FRC and one-half of two-thirds of VT measurements will be sufficiently accurate for clinical and investigational use.  相似文献   

16.
We compared pulsed Doppler (PD) measurements of stroke volume (SV) and cardiac output (CO) as a function of work load with previously reported values that were obtained by standard invasive methods. Suprasternal notch measurements of Doppler-shifted frequency (delta f) were obtained from the ascending aorta and SV calculated with the Doppler equation and an independent measurement of aortic diameter. Motion artifacts were minimized with the aid of a restraining table cycle ergometer. Signal aliasing was accommodated with manual summation of delta f waveforms. A total of 207 determinations were made in 10 sitting subjects exercising to exhaustion. Linear regression analysis of CO vs. work load was significant (P less than 0.001). The correlation coefficient (r = 0.95) and standard error of estimate value (1.21 1/min) were similar to values from the literature. Absolute values of CO and SV underestimated the literature values across all work loads. Technical reproducibility was assessed by comparing with paired t tests the differences between 65 duplicate serial measurements of CO and SV at rest and exercise. No significant differences (P less than 0.001) were found. We concluded that PD-determined SV and CO are reproducible and correlate linearly with work load in a manner consistent with reported invasive techniques. Thus the PD method appears suitable for use during submaximal and peak exercise.  相似文献   

17.
Previous resistive load detection (RLD) studies have ignored the nose, the usual route of breathing. Weber's law predicts the delta R50 (the added load detectable on 50% of presentations) to be a fixed percent of the background resistance (R0) and thus the delta R50/R0 ratio (the Weber fraction) is constant. We have noted the nose to be sensitive to added load, we wondered if the nose might play a role in RLD. To determine whether this was true and to characterize the effects of changes in R0 in the range of normal nasal resistance (RN), we determined R0 and delta R50 using standard techniques under the following conditions: nose vs. decongested nose, nose vs. nose with added external R0 (3.0 and 8.0 cmH2O X l-1 X s), nose vs. anesthetized nose, nose vs. mouth, and mouth vs. mouth with added load (3 cmH2O X l-1 X s). We found that decongestant decreased RN [4.3 +/- 0.6 (SE) to 3.1 +/- 0.5 cmH2O X l-1 X s, P less than 0.05] and delta R50 (1.7 +/- 0.5 to 1.1 +/- 0.3 cmH2O X l-1 X s, P less than 0.05). When an external load of 3 cmH2O X l-1 X s was added to the nose, delta R50 did not change significantly (1.4 +/- 0.2 to 1.1 +/- 0.2 cmH2O X l-1 X s), but the Weber fraction decreased (0.28 +/- 0.05 to 0.15 +/- 0.03, P less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An inverse relationship between baseline artery diameter (BAD) and flow-mediated vasodilation (FMD) has been identified using reactive hyperemia (RH) to create a shear stress (SS) stimulus in human conduit arteries. However, RH creates a SS stimulus that is inversely related to BAD. The purpose of this study was to compare FMD in response to matched levels of SS in two differently sized upper limb arteries [brachial (BA) and radial (RA) artery]. With the use of exercise, three distinct, shear rate (SR) stimuli were created (SR = blood velocity/vessel diameter; estimate of SS) in the RA and BA. Artery diameter and mean blood velocity were assessed with echo and Doppler ultrasound in 15 healthy male subjects (19-25 yr). Data are means ± SE. Subjects performed 6 min of adductor pollicis and handgrip exercise to increase SR in the RA and BA, respectively. Exercise intensity was modulated to achieve uniformity in SR between arteries. The three distinct SR levels were as follows: steady-state exercise 39.8 ± 0.6, 57.3 ± 0.7, and 72.4 ± 1.2 s(-1) (P < 0.001). %FMD and AbsFMD (mm) at the end of exercise were greater in the RA vs. the BA at each shear level [at the highest level: RA = 15.7 ± 1.5%, BA = 5.4 ± 0.8% (P < 0.001)]. The mean slope of the within-subject SR-%FMD regression line was greater in the RA (RA = 0.33 ± 0.04, BA = 0.13 ± 0.02, P < 0.001), and a strong within-subjects relationship between %FMD and SR was observed in both arteries (RA: r(2) = 0.92 ± 0.02; BA: r(2) = 0.90 ± 0.03). Within the RA, there was a significant relationship between baseline diameter and %FMD; however, this relationship was not present in the BA (RA: r(2) = 0.76, P < 0.001; BA: r(2) = 0.03, P = 0.541). These findings suggest that the response to SS is not uniform across differently sized vessels, which is in agreement with previous studies.  相似文献   

19.
Obstructive sleep apnea (OSA) acutely increases systemic (Psa) and pulmonary (Ppa) arterial pressures and decreases ventricular stroke volume (SV). In this study, we used a canine model of OSA (n = 6) to examine the role of hypoxia and the autonomic nervous system (ANS) in mediating these cardiovascular responses. Hyperoxia (40% oxygen) completely blocked any increase in Ppa in response to obstructive apnea but only attenuated the increase in Psa. In contrast, after blockade of the ANS (20 mg/kg iv hexamethonium), obstructive apnea produced a decrease in Psa (-5.9 mmHg; P < 0.05) but no change in Ppa, and the fall in SV was abolished. Both the fall in Psa and the rise in Ppa that persisted after ANS blockade were abolished when apneas were induced during hyperoxia. We conclude that 1) hypoxia can account for all of the Ppa and the majority of the Psa response to obstructive apnea, 2) the ANS increases Psa but not Ppa in obstructive apnea, 3) the local effects of hypoxia associated with obstructive apnea cause vasodilation in the systemic vasculature and vasoconstriction in the pulmonary vasculature, and 4) a rise in Psa acts as an afterload to the heart and decreases SV over the course of the apnea.  相似文献   

20.
We have studied the effect of alveolar hypoxia on fluid filtration characteristics of the pulmonary microcirculation in an in situ left upper lobe preparation with near static flow conditions (20 ml/min). In six dogs (group 1), rate of edema formation (delta W/delta t, where W is weight and t is time) was assessed over a wide range of vascular pressures under two inspired O2 fraction (FIO2) conditions (0.95 and 0.0 with 5% CO2-balance N2 in both cases). delta W/delta t was plotted against vascular pressure, and the best-fit linear regression was obtained. There was no significant difference (paired t test) in either threshold pressure for edema formation [18.3 +/- 1.8 and 17.1 +/- 1.2 (SE) mmHg, respectively] or the slopes (0.067 +/- 0.008 and 0.073 +/- 0.017 g.min-1. mmHg-1.100g-1, respectively). In another seven dogs (group 2), delta W/delta t was obtained at a constant vascular pressure of 40 mmHg under four FIO2 conditions (0.95, 0.21, 0.05, and 0.0, with 5% CO2-balance N2). Delta W/delta t for the four conditions averaged 0.60 +/- 0.11, 0.61 +/- 0.11, 0.61 +/- 0.10, and 0.61 +/- 0.10 (SE) g.min-1.mmHg-1.100g-1, respectively. No significant differences (ANOVA for repeated measures) were noted. We conclude that alveolar hypoxia does not alter the threshold for edema formation or delta W/delta t at a given microvascular pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号