首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The composition of the lipopolysaccharides and the corresponding lipid-free polysaccharides from four R-mutants of Salmonella has been studied. All the lipopolysaccharides, from RI and RII serotypes contained d-glucose, d-galactose, heptose, N-acetylglucosamine and 3-deoxy-2-oxo-octonate. The polysaccharide obtained from the RII lipopolysaccharides also contained all these sugars. The polysaccharides from RI lipopolysaccharides lacked N-acetylglucosamine. 2. From partial hydrolysates of the lipopolysaccharides, a number of oligosaccharides have been isolated and partially characterized. Oligosaccharides containing N-acetylglucosamine or glucosamine were obtained only from RII lipopolysaccharides. Several oligosaccharides composed of glucose and galactose were common to RI and RII preparations. 3. A structural unit, based on the oligosaccharides found, is proposed for the RII lipopolysaccharide. It contains the sequence: alpha-N-acetylglucosaminyl- alpha-glucosyl-alpha-galactosyl-glucosyl.... A second alpha-galactosyl residue is bound to position 6 of the last glucosyl group. The complete unit is believed to to be attached to a polyheptose phosphate backbone in the RII antigen. 4. The RI lipopolysaccharide of Salmonella minnesota contains an analogous structure lacking the terminal N-acetylglucosamine residue. 5. A basal structure common to the lipopolysaccharides of several Salmonella species is proposed.  相似文献   

2.
A lipopolysaccharide was isolated from Neisseria meningitidis group B by phenol/water extraction and purified by differential ultracentrifugation. This preparation exhibited endotoxic properties as shown by the limulus-lysate assay. Mild acid hydrolysis of the lipopolysaccharides yielded a lipid A fraction and a polysaccharide fraction. The lipid A fraction contained fatty acids, phosphorus and glucosamine. Analysis of the polysaccharide fraction revealed the presence of glucose, galactose, glucosamine, 2-keto-3-deoxyoctonic acid and phosphorus. There was no heptose.  相似文献   

3.
A comparison of lipid-free polysaccharides from gram-negative bacteria was rapidly accomplished by using high-performance liquid chromatography of underivatized hydrolysates. Examination of a number of such products revealed that, contrary to earlier reports, Xanthomonas campestris lipopolysaccharide contained heptose, together with rhamnose and galactose, but not mannose. The polymers from the methanotrophs “Methylomonas albus” and “Methylosinus trichosporium” contained heptose and glucose, and that from a “Klebsiella aerogenes” strain contained heptose, glucose, and galactose. The absence of heptose from the lipopolysaccharide of Myxococcus xanthus was confirmed.  相似文献   

4.
Lipopolysaccharides were isolated from the cell walls of Vibrio cholerae 569 B (Inaba) and El-tor (Inaba). Chemical analysis revealed the presence of glucose, fructose, mannose, heptose, rhamnose, ethanolamine, fatty acids and glucosamine. The lipopolysaccharides do not contain 2-keto-3-deoxyoctonate, the typical linking sugar of polysaccharide and lipid moieties of enterobacterial lipopolysaccharides. Galactose, a typical core polysaccharide component of many gram-negative bacteria was also absent from lipopolysaccharides of these organisms. By hydrolysis in 1% acetic acid, the lipopolysaccharides have been separated into a polysaccharide part (degraded polysaccharide) and a lipid part (lipid A). Components of degraded polysaccharide and lipid A moiety were identified and determined. The lipid A fractions contained fatty acids, phosphorus and glucosamine. All the neutral sugars detected in lipopolysaccharides were shown to be the constituents of its polysaccharide moiety. The fatty acid analysis of lipopolysaccharide and lipid A showed the presence of both hydroxy and non hydroxy acids. They were different from those of lipids extracted from cell walls before the extraction of lipopolysaccharides. 3-Hydroxylauric and 3-hydroxymyristic acids predominated in lipopolysaccharide and lipid A of Vibrio cholerae and El-tor (Inaba).  相似文献   

5.
Structural studies have been carried out on the O-specific fraction from the lipopolysaccharide of Pseudomonas aeruginosa NCTC 8505, Habs serotype 03. The O-specific polysaccharide has a tetrasaccharide repeating-unit containing residues of L-rhamnose (Rha), 2-acetamido-2-deoxy-D-glucose (GlcNAc), 2-acetamido-2-deoxy-L-galacturonic acid (GalNAcA), and 2,4-diacetamido-2,4,6-trideoxy-D-glucose (BacNAc2). The following structure has been assigned to the repeating-unit: leads to 3)Rhap(beta 1 leads to 6)GlcpNAc(alpha 1 leads to 4)GalpNAcA(alpha 1 leads to 3)BacpNAc2(alpha 1 leads to. The parent lipopolysaccharide is a mixture of S, R, and SR species, and its high phosphorus content is partly due to the presence of triphosphate residues, as found for other lipopolysaccharides from P. aeruginosa. In addition to phosphorus, heptose, a 3-deoxyoctulosonic acid, and amide-bound alanine, the core oligosaccharide contains glucose, rhamnose, and galactosamine (molar proportions 3:1:1). The rhamnose and part of the glucose are present as unsubstituted pyranoside residues: other glucose residues are 6-substituted.  相似文献   

6.
Serological tests revealed immunochemical similarities between the lipopolysaccharides of Hafnia alvei strains PCM 1200, 1203 and 1205. Immunoblotting and ELISA showed cross-reactions between the strains. NMR spectroscopy showed that the O-deacetylated O-specific polysaccharides isolated from lipopolysaccharides of H. alvei strains PCM 1200 and 1203 possessed the same composition and sequence as the O-deacetylated O-specific polysaccharide of H. alvei strain PCM 1205, that is a glycerol teichoic-acid-like polymer with a repeating unit of the following structure: [carbohydrate structure: see text] NMR spectroscopic studies of the polysaccharides concluded that O-3 of the side chain beta-D-GlcpNAc is partially O-acetylated (50-80%) in both investigated strains. In strain PCM 1203 an additional O-acetyl group (50-80%) is linked to O-6 of the chain -->3)-alpha-D-GlcpNAc-(1--> residue. The structural features of the isolated O-specific polysaccharides were also the same as those of the O-specific polysaccharides on the bacterial cells directly observed by the HR-MAS NMR technique.  相似文献   

7.
A polysaccharide isolated from the degraded lipopolysaccharides of P. aeruginosa serogroup O7 (Lányi--Bergan classification) was characterized by liquid chromatography, acid hydrolysis, and 1H and 13C NMR spectroscopy. It has molecular mass 15,000 and represents mainly a rhamnan of the structure----2)-alpha-D-Rha-(1----3)-alpha-D-Rha-(1----3)-alpha-D-Rha-(1 ----, identical to the structure of O-specific polysaccharides of Pseudomonas aeruginosa pvs morsprunorum and cerasi. Some minor constituents, such as glucose, mannose, an unknown sugar, and phosphate, are found in the polysaccharide preparation as well. Distribution of the rhamnan in some other P. aeruginosa serogroups is discussed and its identity to the common polysaccharide antigen of P. aeruginosa is suggested.  相似文献   

8.
Volk, Wesley A. (University of Virginia, Charlottesville). Cell wall lipopolysaccharides from Xanthomonas species. J. Bacteriol. 91:39-42. 1966.-The lipopolysaccharides from 20 species of Xanthomonas were extracted and purified. Biological studies suggest that these lipopolysaccharides are analogous to the endotoxins extracted from enteric organisms, as judged by their mouse lethality and their ability to provoke the local Shwartzman reaction in rabbits. Studies on the composition of the polysaccharides revealed that all contained uronic acid, glucose, mannose, and a compound apparently identical to the 2-keto-3-deoxyoctonate previously described in enteric organisms. The polysaccharide also contains organic phosphate, and additional carbohydrates such as rhamnose, xylose, fucose, and galactose are found in some, but not all, species. In contrast to the composition of the enteric lipopolysaccharides, heptose was not found in any of the lipopolysaccharides of the Xanthomonas species studied.  相似文献   

9.
Comparative chemical analysis (methylation, gas chromatography/mass spectrometry, periodate oxidation, etc.) of the lipopolysaccharides and degraded polysaccharides derived from Shigella sonnei phase I, phase II and galactose-deficient R mutants revealed a structure as shown: (formula: see text) 3-Deoxy-D-manno-octulosonic acid (dOclA) as an immunodeterminant was observed in the passive hemolysis inhibition test by (a) selective inhibition of the phase II system by dOclA; (b) the kinetics of the change of serological activity during mild acid treatment: 1% acetic acid abolished serological activity; (c) a lack of activity in galactose-less R mutants and reactivity with Re mutants including Salmonella minnesota Re. An enhanced sensitivity of phase II lipopolysaccharide to galactose oxidase after prolonged treatment with 1% acetic acid suggests that dOclA is linked to C-6 of the terminal or subterminal galactose. dOclA as immunodeterminant could explain some different polysaccharide structures described for Escherichia coli R1 core.  相似文献   

10.
Lipopolysaccharides (LPSs) from four strains of Ralstonia solanacearum belonging to biovar I (ICMP 6524, 8115, 5712, and 8169) were isolated and investigated. The structural components of the LPS molecule, such as lipid A, the core oligosaccharide, and O-specific polysaccharide (O-PS), were obtained after mild acid hydrolysis of the LPS preparations. In lipid A from all the LPS samples studied, 3-hydroxyhexadecanoic, 2-hydroxyhexadecanoic, tetradecanoic, and hexadecanoic fatty acids prevailed. The dominant monosaccharides of the core oligosaccharides of all of the strains studied were rhamnose, glucose, glucosamine, 2-keto-3-deoxyoctulosonic acid, and heptose. However, individual strains varied in the content of galactose, ribose, xylose, and arabinose. Three types of the O-PS structure were established, which differed in their configuration (alpha or beta), as well as in the type of the bond between glucosamine and rhamnose residues (1-->2 or 1-->3).  相似文献   

11.
1. A series of oligosaccharides was isolated from Salmonella milwaukee lipopolysaccharide by partial acid hydrolysis. 2. Structural studies on these oligosaccharides indicated that the O-specific side chain of this lipopolysaccharide has a repeating pentasaccharide unit that is probably alpha-d-galactosyl-(1-->3)-beta-d-galactosyl- (1-->3)-N-acetylgalactosaminyl-(1-->3)-N-acetyl- d-glucosaminyl-(1-->4)-l-fucose. 3. Another oligosaccharide, which is not structurally related to the repeating pentasaccharide unit, has also been isolated and it is indistinguishable from an oligosaccharide obtained from Salmonella ;rough' (R) lipopolysaccharides. The isolation of this and similar core oligosaccharides from all chemotype VI lipopolysaccharides supports the view that Salmonella S-lipopolysaccharides have a common core that is probably identical with RII lipopolysaccharide.  相似文献   

12.
S Das  M Ramm  H Kochanowski    S Basu 《Journal of bacteriology》1994,176(21):6550-6557
The lipopolysaccharide (LPS) was isolated from Pseudomonas syringae pv. coriandricola W-43 by hot phenol-water extraction. Rhamnose and 3-N-acetyl-3-deoxyfucose were found to be the major sugar constituents of the LPS together with N-acetylglucosamine, N-acetylgalactosamine, heptose, and 3-deoxy-D-manno-octulosonic acid (Kdo). The main fatty acids of lipid A of the LPS were 3-OH-C:10, C12:0, 2-OH-C12:0, and 3-OH-C12:0. The O-specific polysaccharide liberated from the LPS by mild-acid hydrolysis was purified by gel permeation chromatography. The compositional analysis of the O-specific polysaccharide revealed the presence of L-rhamnose and 3-N-acetyl-3-deoxy-D-fucose in a molar ratio of 4:1. The primary structure of the O-specific polysaccharide was established by methylation analysis together with 1H and 13C nuclear magnetic resonance spectroscopy, including two-dimensional shift-correlated and one-dimensional nuclear Overhauser effect spectroscopy. The polysaccharide moiety was found to consist of a tetrasaccharide rhamnan backbone, and 3-N-acetyl-3-deoxy-D-fucose constitutes the side chain of the branched pentasaccharide repeating unit of the polysaccharide.  相似文献   

13.
The O-specific polysaccharide obtained from Shigella dysenteriae type-2 lipopolysaccharide by mild acid hydrolysis consisted of N-acetylgalactosamine, N-acetylglucosamine, D-galactose, D-glucose, and O-acetyl group in the ratio of 2:1:1:1:1. A number of oligosaccharides were obtained by deamination of the N-deacetylated polysaccharide and by Smith degradation of the both native and O-deacetylated polysaccharides. The identification of oligosaccharides along with methylation analysis and chromic anhydride oxidation showed that the polysaccharide was built up of the repeating pentasaccharide units whose proposed structure is given below: (see article) Serological properties of Sh. dysenteriae O-specific polysaccharides are discussed.  相似文献   

14.
The O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of Citrobacter werkmanii PCM 1548 and PCM 1549 (serogroup O14) and found to contain D-glucose, D-glucosamine and glycerol-1-phosphate in molar ratios 2 : 2 : 1. Based on methylation analysis and 1H and 13C nuclear magnetic resonance spectroscopy data, it was established that the O-specific polysaccharides from both strains have the identical branched tetrasaccharide repeating unit with 3,6-disubstituted GlcNAc, followed by 2,4-disubstituted Glc residues carrying at the branching points lateral residues of Glc and GlcNAc at positions 6 and 2, respectively. Glycerol-1-phosphate is linked to position 6 of the chain Glc. All sugars have a beta configuration, except for the side-chain Glc, which is alpha. Serological studies revealed a close relatedness of the lipopolysaccharides of C. werkmanii PCM 1548 and PCM 1549, both belonging to serogroup O14. In immunoblotting, anti-C. werkmanii PCM 1548 serum showed no cross-reactivity with the O-polysaccharide bands of the lipopolysaccharides of Citrobacter youngae PCM 1550 (serogroup O16) and Hafnia alvei PCM 1207, also containing a lateral glycerol phosphate residue.  相似文献   

15.
The structure of the O-specific polysaccharide chain of the Shigella dysenteriae type 7 lipopolysaccharide has been established mainly by 13C NMR analysis of the intact and modified (acetylated and de-O-acetylated) polymers, as well as of products of its solvolysis with anhydrous hydrogen fluoride. The polysaccharide contains two unusual sugar derivatives. N-acetyl-D-galactosaminuronamide and 4-(N-acetylglycyl)amido-4,6-dideoxy-D-glucose (GalNAcAN and Qui4N----GlyAc, respectively) and is built up of tetrasaccharide repeating units of the following structure: (Formula: see text). Serological cross-reaction of S. dysenteriae type 7 and Pseudomonas aeruginosa O4 (Lányl) is accounted for by the similarity of their O-specific polysaccharides.  相似文献   

16.
Studies of the lipopolysaccharide of Pseudomonas alcaligenes strain BR 1/2 were extended to the polysaccharide moiety. The crude polysaccharide, obtained by mild acid hydrolysis of the lipopolysaccharide, was fractionated by gel filtration. The major fraction was the phosphorylated polysaccharide, for which the approximate proportions of residues were; glucose (2), rhamnose (0.7), heptose (2-3), galactosamine (1), alanine (1), 3-deoxy-2-octulonic acid (1), phosphorus (5-6). The heptose was l-glycero-d-manno-heptose. The minor fractions from gel filtration contained free 3-deoxy-2-octulonic acid, P(i) and PP(i). The purified polysaccharide was studied by periodate oxidation, methylation analysis, partial hydrolysis, and dephosphorylation. All the rhamnose and part of the glucose and heptose occur as non-reducing terminal residues. Other glucose residues are 3-substituted, and most heptose residues are esterified with condensed phosphate residues, possibly in the C-4 position. Free heptose and a heptosylglucose were isolated from a partial hydrolysate of the polysaccharide. The location of galactosamine in the polysaccharide was not established, but either the C-3 or C-4 position appears to be substituted and a linkage to alanine was indicated. In its composition, the polysaccharide from Ps. alcaligenes resembles core polysaccharides from other pseudomonads: no possible side-chain polysaccharide was detected.  相似文献   

17.
Antigenic differences were revealed between the cell wall outer membrane lipopolysaccharides and the capsular high molecular weight bioglycans for a typical strain of the nitrogen-fixing rhizobacterium Azospirillum lipoferum Sp59b using antibodies prepared against the homologous lipopolysaccharide and lipopolysaccharide-protein complex. From the capsular lipopolysaccharide-protein and polysaccharide-lipid complexes of A. lipoferum Sp59b, polysaccharides were isolated and their structure was for the first time established in Azospirillum by monosaccharide analysis which included determination of the absolute configurations, methylation, O-deacetylation, and one- and two-dimensional NMR spectroscopy. The polysaccharides of the capsular complexes were shown to have identical structure of the branched tetrasaccharide repeating unit, which differs from the structure of the O-specific polysaccharide within the outer membrane lipopolysaccharide of this strain.  相似文献   

18.
The lipopolysaccharide from the freshwater bacterium Rahnella aquatilis 1-95 has been isolated and investigated for the first time. The structural components of the lipopolysaccharide molecule: lipid A, core oligosaccharide, and O-specific polysaccharide were isolated by mild acidic hydrolysis. In lipid A, 3-hydroxytetradecanoic and tetradecanoic acids were found to be the predominant fatty acids. In the core oligosaccharide, galactose, arabinose, fucose, and an unidentified component were shown to be the major monosaccharides. The O-specific polysaccharide consists of a regularly repeating trisaccharide unit with the acyl and phosphate following structure: [structure: see text] groups have been shown to be responsible for the toxic and pyrogenic properties of the lipopolysaccharide of R. aquatilis.  相似文献   

19.
Salmonella enterica sv. Typhimurium strain 1135 possesses smooth(S)-form lipopolysaccharide (LPS). Although the structures of the core region and the O-specific polysaccharide were investigated intensively between the 1960s and the 1980s, the structure of the linkage region between the O-chain and the core was not elucidated unequivocally. By using modern MS and high-field NMR spectroscopy for analysis of the isolated carbohydrate backbone of the LPS, it has been shown that it is a beta-D-Galp residue that links the first repeating unit of the O-specific polysaccharide to O-4 of the last D-Glcp residue of the core region. Interestingly, this particular D-Galp residue is alpha-linked in all following repeating units. The data are discussed with regard to the ligation of O-specific polysaccharide and core region during LPS biosynthesis.  相似文献   

20.
The O-specific polysaccharide of Proteus vulgaris O39 was found to contain a new acidic component of Proteus lipopolysaccharides, 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Pse5Ac7Ac). The following structure of the polysaccharide was determined by NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, ROESY, and 1H,(13)C HMQC experiments, along with selective cleavage of the polysaccharide by solvolysis with anhydrous trifluoromethanesulfonic (triflic) acid: -->8)-beta-Psep5Ac7Ac-(2-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D-GlcpNAc-(1--> The structure established is unique among the O-specific polysaccharides, which is in accordance with classification of the strain studied into a separate Proteus serogroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号