首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Summary The yellow mutant y-1 ofEuglena gracilis, whose plastids are chlorophyll-deficient, is stable only in the dark and at suboptimal growth temperatures (below 26 C).At growth temperature of 30 C (in darkness) this strain is unstable and undergoes permanent bleaching. The process is enhanced by light so that bleaching may be increased up to 100 per cent. The degree of bleaching is proportional to light intensity.Bleaching is possible only during the active cell division. In the resting medium there is no bleaching, but total carotenoid synthesis is stimulated by illumination. At suboptimal growth temperature (26 C) the mutant is bleached only in the light, if light intensity exceeds 2,000 Lux. The results indicate that the process of bleaching in the yellow mutant is much more sensitive to temperature and light than in wild typeEuglena.  相似文献   

2.
Summary Entrainment of the circadian rhythm in the pineal N-acetyltranferase activity by prolonged periods of light was studied in rats synchronized with a light:dark regime of 1212 h by observing phase-shifts in rhythm after delays in switching off the light in the evening or after bringing forward of the morning onset of light. When rats were subjected to delays in switching off the light of up to 10 h and then were released into darkness, phase-delays of the evening N-acetyltransferase rise during the same night corresponded roughly to delays in the light switch off. However, phasedelays of the morning decline were much smaller. After a delay in the evening switch off of 11 h, no N-acetyltransferase rhythm was found in the subsequent darkness. The evening N-acetyltransferase rise was phase-delayed by 6.2 h at most 1 day after delays. Phase-delays of the morning Nacetyltransferase decline were shorter than phasedelays of the N-acetyltransferase rise by only 0.7 h to 0.9 h at most. Hence, 1 day after delays in the evening switch off, the period of the high night N-acetyltransferase activity may be shortened only slightly. The N-acetyltransferase rhythm was abolished only after a 12 h delay in switching off the light.Rats were subjected to a bringing forward of the morning light onset and then were released into darkness 4 h before the usual switch off of light. In the following night, the morning N-acetyltransferase decline, but not the evening rise, was phase advanced considerably. Moreover, when the onset of light was brought forward to before midnight, the N-acetyltransferase rise was even phase-delayed. Hence, 1 day after bringing forward the morning onset of light, the period of the high night N-acetyltransferase activity may be drastically reduced. When rats were subjected to a 4 h light pulse around midnight and then released into darkness, the N-acetyltransferase rhythm in the next night was abolished.The data are discussed in terms of a two-component pacemaker controlling the N-acetyltransferase rhythm. It is suggested that delays in the evening switch off of light may disturb the N-acetyltransferase rhythm the next day only a little, as the morning component may adjust to phasedelays of the evening component almost within one cycle. On the other hand, bringing forward the morning onset of light may disturb the N-acetyltransferase rhythm heavily the next day, as the evening component not only does not adjust to phase-advances of the morning component, but it may even be phase-delayed when the light onset occurs before midnight.Abbreviations NAT N-acetyltransferase - PRC phase response curve - E evening component of the N-acetyltransferase rhythm or of its pacemaker - M morning component of the N-acetyltransferase rhythm or of its pacemaker - LD xy light dark cycle comprising x h of light and y h of darkness  相似文献   

3.
NAD kinase and NADP phosphatase activities were detected in the supernatant and the pellet fractions prepared by sonication and centrifugation of the achlorophyllous ZC mutant of the phytoflagellate Euglena gracilis. A detailed study of substrate concentration-velocity curves enabled us to define the saturating substrate concentrations that were used in the enzyme assays. An analysis of the reproducibility of the entire assay procedure indicated that the pooled standard error was about 14%. We report circadian variations in the activities of NAD kinase and NADP phosphatase in the soluble and membrane-bound fractions of both synchronously dividing and nondividing cultures maintained in constant darkness. Bimodal circadian rhythms in total NADP phosphatase activity were found in dividing cells (peaks at circadian times [CT] 00 and 12). The peak observed at CT 00-03 disappeared when the cells had ceased dividing, a result that suggests that it might be regulated by the cell division cycle. NAD kinase activity displayed unimodal circadian rhythms (peak at CT 12) in dividing cells, which persisted with the same phase after the culture entered the stationary phase of growth. Results are discussed with reference to a model (K. Goto, D. L. Laval-Martin, and L. N. Edmunds, Jr., 1985, Science 228, 1284-1288) in which we have proposed that the Ca2(+)-transport system, Ca2+, calmodulin, NAD kinase, and NADP phosphatase could represent clock "gears" that might constitute a self-sustained circadian oscillating loop.  相似文献   

4.
The periodic light-dark cycle is the dominant environmental synchronizer used by humans to entrain to the geophysical 24-h day. Entrainment is a fundamental property of circadian systems by which the period of the internal clock (tau) is synchronized to the period of the entraining stimuli (T cycle). An important aspect of entrainment in humans is the maintenance of an appropriate phase relationship between the circadian system, the timing of sleep and wakefulness, and environmental time (a.k.a. the phase angle of entrainment) to maintain wakefulness throughout the day and consolidated sleep at night. In this article, we review these concepts and the methods for assessing circadian phase and period in humans, as well as discuss findings on the phase angle of entrainment in healthy adults. We review findings from studies that examine how the phase, intensity, duration, and spectral characteristics of light affect the response of the human biological clock and discuss studies on entrainment in humans, including recent studies of the minimum light intensity required for entrainment. We briefly review conditions and disorders in which failure of entrainment occurs. We provide an integrated perspective on circadian entrainment in humans with respect to recent advances in our knowledge of circadian period and of the effects of light on the biological clock in humans.  相似文献   

5.
6.
7.
8.
We examined whether melatonin can act as a synchronizing agent within the circadian system of amphibians by testing the ability of melatonin injections to entrain the circadian locomotor activity rhythm of a newt (Cynops pyrrhogaster). Under constant darkness, all newts (13 cases) showing the free-running rhythms were subcutaneously injected with 10 g melatonin at the same time every other day for at least 30 days. Subsequently, they were injected with vehicle (1% ethanolic saline) instead of melatonin for at least another 30 days. In 10 of the 13 newts, the locomotor activity rhythms could be entrained to a period of 24 h by melatonin injections but not by vehicle injections. During the entrained steady-state, the active phase of an activity-rest cycle preceded the time of melatonin injections as previously reported in other diurnal species. These results suggest that the endogenous circadian rhythm of melatonin concentration may be involved in synchronizing circadian oscillator(s) within the newt's circadian system.  相似文献   

9.
10.
The effects of chemicals capable of antagonizing the functions of calmodulin, such as trifluoperazine, chlorpromazine, imipramine, alprenolol, W7, and W13, on the circadian conidiation rhythm of Neurospora crassa were examined. Trifluoperazine, at a 30-microM concentration, was most effective in shifting the phase of the conidiation rhythm and caused a maximum phase delay at circadian time (CT) 6 and maximum phase advance at CT 9. Chlorpromazine was less effective than trifluoperazine, and a 300-microM concentration of chlorpromazine was required for a similar phase shift. Imipramine, at a 1-mM concentration, caused only a small phase shift, while alprenolol had little effect on biological clock function. W7 and W13 caused phase delays longer than 10 hr at CT 6 and caused a phase advance of about 5 hr at CT 10 when present at a 200-microM concentration. However, W5 and W12, the dechlorinated homologues of W7 and W13, had no effects on clock function at the same concentration. Calmodulin was assayed by measurements of stimulation of cyclic nucleotide diphosphodiesterase activity. Calmodulin content remained constant in trifluoperazine-sensitive and trifluoperazine-insensitive phases for two cycles following the light-dark transition.  相似文献   

11.
12.
13.
14.
Short-term (1-3 days) constant light exposure (brief LL) potentiates nonphotic phase shifting induced by sleep deprivation and serotonin (5-HT) agonist stimulation. The present assessments reveal that exposure to brief LL markedly alters the magnitude and shape of the 5-HT1A,7 receptor agonist, 8-(+)2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahyronapthalene (8-OH-DPAT) phase-response curve, facilitating (approximately 12 h) phase-advance shifts during the early morning when serotonergics have no phase-shifting effect. Brief LL also reduces the threshold for 8-OH-DPAT shifting at midday, evidenced by 5- to 6-h phase-advance shifts elicited by dosages that have no effect without the LL treatment. The brief LL-potentiated phase advances to intraperitoneal 8-OH-DPAT at zeitgeber time 0 (ZT 0) were blocked by the 5-HT1A antagonists, pindolol and WAY 100635, indicating that this shifting is mediated by 5-HT1A receptors. Antagonists with action at 5-HT7 receptors, including ritanserin and metergoline, were without effect. Although autoradiographic analyses of [3H]8-OH-DPAT binding indicate that brief LL does not upregulate suprachiasmatic nucleus (SCN) 5-HT1A receptor binding, intra-SCN microinjection of 8-OH-DPAT at ZT 0 in brief LL-exposed hamsters induced shifts similar to those produced by intraperitoneal injection, suggesting that SCN 5-HT1A receptors mediate potentiated 8-OH-DPAT-induced shifts during the early morning. Lack of shifting by intra-SCN 8-OH-DPAT at ZT 6 or 18 (when intraperitoneal 8-OH-DPAT induces large shifts), further indicates that brief LL-potentiated shifts at these time points are mediated by 5-HT target(s) outside the SCN. Significantly, sleep deprivation-induced phase-advance shifts potentiated by brief LL (approximately 9 h) at ZT 0 were blocked by pindolol, suggesting that these behavioral shifts could be mediated by the same SCN 5-HT1A receptor phase-resetting pathway as that activated by 8-OH-DPAT treatment.  相似文献   

15.
Marine and estuarine crabs brood attached eggs, which hatch synchronously releasing larvae at precise times relative to environmental cycles. The subtidal crab Dyspanopeus sayi has a circadian rhythm, in which larvae are released within the 4-h interval after the time of ambient sunset. Previous studies demonstrated that the rhythm can be entrained by the light:dark cycle. Since subtidal crabs are also exposed to temperature fluctuations, an unstudied question was whether the circadian rhythm could be entrained by the diel temperature cycle. To answer this question, ovigerous D. sayi were entrained in darkness to 2.5, 5, and 10 °C temperature cycles that were reverse in phase from the ambient temperature cycle. After entrainment, larval release times were monitored in constant conditions of temperature and darkness with a time-lapse video system. The effectiveness of a temperature cycle to shift the timing of larval release increased as the magnitude of the temperature cycle increased and as crabs were exposed to increasing numbers of entrainment cycles. However, entrainment to a 10 °C cycle only lasted 2 days in constant conditions. When crabs were entrained to a light:dark vs. a 10 °C temperature cycle, the light:dark cycle was dominant for entrainment. Nevertheless, ovigerous crabs do sense temperature cycles and in areas where daylight is too low for entrainment, temperature cycles can be used to regulate the time of larval release.  相似文献   

16.
The population of a ciliate protozoan, Paramecium multimicronucleatum, exhibits a circadian rhythm as measured by the number of the cells traversing an observation point ("traverse frequency," or TF). The present study examined phase shifting of the TF rhythm by administering 2-hr light pulses at different phases of the circadian cycle to cultures free-running in constant darkness (DD). The results were summarized in a phase response curve (PRC), categorized as Type 1. This PRC indicated a relatively narrow phase zone insensitive to the light pulse ("dead zone"). Entrainment of the rhythm to light pulses repeated at 24-hr intervals was also examined, and it was found that the rhythm gradually reached a steady state, following several transient cycles, with the pulses falling at a phase corresponding to the narrow dead zone. Such a steady-state rhythm, with a minimum at approximately 3 hr after the pulse and a maximum at approximately 12 hr after the pulse, was mathematically simulated by superimposing a response function to the pulse on a sinusoidal function representative of the free-running rhythm in DD.  相似文献   

17.
Shift workers and transmeridian travelers are exposed to abnormal work-rest cycles, inducing a change in the phase relationship between the sleep-wake cycle and the endogenous circadian timing system. Misalignment of circadian phase is associated with sleep disruption and deterioration of alertness and cognitive performance. Exercise has been investigated as a behavioral countermeasure to facilitate circadian adaptation. In contrast to previous studies where results might have been confounded by ambient light exposure, this investigation was conducted under strictly controlled very dim light (standing approximately 0.65 lux; angle of gaze) conditions to minimize the phase-resetting effects of light. Eighteen young, fit males completed a 15-day randomized clinical trial in which circadian phase was measured in a constant routine before and after exposure to a week of nightly bouts of exercise or a nonexercise control condition after a 9-h delay in the sleep-wake schedule. Plasma samples collected every 30-60 min were analyzed for melatonin to determine circadian phase. Subjects who completed three 45-min bouts of cycle ergometry each night showed a significantly greater shift in the dim light melatonin onset (DLMO(25%)), dim light melatonin offset, and midpoint of the melatonin profile compared with nonexercising controls (Student t-test; P < 0.05). The magnitude of phase delay induced by the exercise intervention was significantly dependent on the relative timing of the exercise after the preintervention DLMO(25%) (r = -0.73, P < 0.05) such that the closer to the DLMO(25%), the greater the phase shift. These data suggest that exercise may help to facilitate circadian adaptation to schedules requiring a delay in the sleep-wake cycle.  相似文献   

18.
K. Murata  T. Suzaki 《Protoplasma》1998,203(3-4):125-129
Summary Detergent-treated cell models ofEuglena gracilis showed rounded-up movement of the cell body upon addition of ATP and Ca2+. Reactivation of the cell models was inhibited when the cell models had been treated with solutions containing >150 mM NaCl or >300 mM KC1. When the supernatant of salt-extracted cell models was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two distinctive bands of 120 and 160 kDa were found to be enriched. The cell membrane and associated cytoskeleton (pellicular complex) were isolated after treatment with salt solutions, and examined by electron microscopy to identify essential cortical structures required for reactivating rounding-up cell movement. Among three regularly arranged microtubules, only one and its associated structures were selectively dissolved from the pellicular strips, while the other pellicular elements remained intact. These structures were located in the groove region where sliding between strips is believed to occur during cell shape change. These results suggest a possible involvement of microtubule 2 and its associated bridges in active sliding between adjacent pellicular strips during euglenoid movement.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号